Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+y^3+1=3xy\)
\(\Leftrightarrow\left(x^3+3x^2y+3xy^2+y^3\right)+1=3xy+3x^2y+3xy^2\)
\(\Leftrightarrow\left(x+y\right)^3+1=3xy\left(1+x+y\right)\)
\(\Leftrightarrow\left(x+y+1\right)\left[\left(x+y\right)^2-\left(x+y\right)+1\right]=3xy\left(1+x+y\right)\)
\(\left(x+y+1\right)\left(x^2+y^2+2xy-x-y+1\right)-3xy\left(1+x+y\right)=0\)
\(\Leftrightarrow\left(x+y+1\right)\left(x^2+y^2-xy-x-y+1\right)=0\)
Với \(x+y+1\ne0\) thì \(x^2+y^2-xy-x-y+1=0\)
\(\Leftrightarrow x^2+y^2-xy-x-y+1=0\)
\(\Leftrightarrow2x^2+2y^2-2xy-2x-2y+2=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=0\Rightarrow x=y=1\)(thỏa mãn \(x+y+1\ne0\))
\(\Rightarrow P=\left(1+\frac{x_0}{y_0}\right)\left(1+y_0\right)\left(1+\frac{1}{x_0}\right)=\left(1+\frac{1}{1}\right)\left(1+1\right)\left(1+\frac{1}{1}\right)=8\)
Trần Hoàng Việt thế này có đúng ko ạ?
\(\hept{\begin{cases}x=3\\y=3\end{cases}\Rightarrow}3=a.1\Rightarrow a=3\)
\(Px_o,y_o\in y=3x\Rightarrow y_o=3.x_o\)
\(P=\frac{x_o+1}{3x_o+1}=\frac{x_o+1}{3"x_o+1"}\)
\(\hept{\begin{cases}x_o=-1\Rightarrow P=kXD\\x_o\ne-1\Rightarrow P=\frac{1}{3}\end{cases}}\)
P/s: Ko chắc :D
Giải
\(\)Ta có:\(x^2-x-1=0 \)
\(<=>x^2=x+1\)
\(<=>x^8=(x+1)^4\)
\(=(x+1 )^2*(x+1)^2\)
\(=(x^2+2x+1)(x^2+x+1) \)
\(=(x^2-x-1+3x+2)(x^2-x-1+3x+2)\)
Mà \(x^2-x-1=0\)
\(=(0+3x+2)(0+3x+2)\)
\(=(3x+2)^2\)
Vậy \(x^8=(3x+2)^2\)
Thay\(x^8=(3x+2)^2\) vào F(x)
Ta có: F(x)=\(\sqrt{(3x+2)^2+12x+12}-3x\)
=\(\sqrt{9x^2+12x+4+12x+12}-3x\)
=\(\sqrt{9x^2+24x+16}-3x\)
=\(\sqrt{(3x+4)^2}-3x\)
=\(3x+4-3x\)
=4
Vậy F(x)=4
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{b}{a}=\frac{ab}{a^2}>0\\x_1x_2=\frac{b}{a}=\frac{ab}{a^2}>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1>0\\x_2>0\end{matrix}\right.\)
\(\sqrt{\frac{x_1}{x_2}}+\sqrt{\frac{x_2}{x_1}}-\sqrt{\frac{b}{a}}=\frac{x_1+x_2}{\sqrt{x_1x_2}}-\sqrt{\frac{b}{a}}=\frac{\frac{b}{a}}{\sqrt{\frac{b}{a}}}-\sqrt{\frac{b}{a}}=\sqrt{\frac{b}{a}}-\sqrt{\frac{b}{a}}=0\)
2.
a, Với m\(=1\Rightarrow x^2-x=0\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
b. Ta có \(\Delta=b^2-4ac=\left(-m\right)^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0\)
\(\Rightarrow\)phương trình luôn có 2 nghiệm \(x_1,x_2\)
c, Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=m-1\end{cases}}\)
A=\(\frac{2.x_1x_2+3}{x_1^2+x_2^2+2\left(1+x_1x_2\right)}=\frac{2.x_1x_2+3}{\left(x_1+x_2\right)^2-2x_1x_2+2+2x_1x_2}\)
\(=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\frac{2m+1}{m^2+2}=\frac{\left(m^2+2\right)-\left(m^2-2m+1\right)}{m^2+2}\)
\(=1+\frac{-\left(m-1\right)^2}{m^2+2}\)
Ta thấy \(\frac{-\left(m-1\right)^2}{m^2+2}\le0\Rightarrow1+\frac{-\left(m-1\right)^2}{m^2+2}\le1\)
\(\Rightarrow MaxA=1\)
Dấu bằng xảy ra\(\Leftrightarrow\) \(m-1=0\Leftrightarrow m=1\)
a.Thay p=3 vào pt ta có:
x2+3x-4=0 mà a+b+c=0 thì ta có 2 ng là 1 và -4
b.theo viet ta có x1+x2=-p/2 và x1.x2=-4
nên từ gt đã cho ta có x1.x22+x1+x22+x2>6
x1.x2(x1+x2)+x1+x2>6
2p+(-p/2)>6
3p>12
p>4
Vì pt đã cho là pt bậc 2 \(\Rightarrow a\ne0\)
Do x0 là nghiệm \(\Rightarrow-ax_0^2=bx_0+c\)
\(\Rightarrow-x_0^2=\frac{b}{a}x_0+\frac{c}{a}\)
\(\Rightarrow\left|-x_0\right|^2=\left|\frac{b}{a}x_0+\frac{c}{a}\right|\le\left|\frac{b}{a}\right|\left|x_0\right|+\left|\frac{c}{a}\right|\le M\left|x_0\right|+M\)
\(\Rightarrow\left|x_0\right|^2-1< M\left(\left|x_0\right|+1\right)\)
\(\Rightarrow\left(\left|x_0\right|-1\right)\left(\left|x_0\right|+1\right)< M\left(\left|x_0\right|+1\right)\)
\(\Rightarrowđpcm\)