K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 5 2020

\(x^3+mx-\left(m+1\right)=0\)

\(\Leftrightarrow x^3-1+m\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)+m\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+m+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x^2+x+m+1=0\left(1\right)\end{matrix}\right.\)

\(\Rightarrow\) Pt luôn có 1 nghiệm \(x=1\) ko phụ thuộc m

Để pt có 3 nghiệm thỏa mãn yêu cầu

\(\Leftrightarrow\left(1\right)\) có 2 nghiệm pb trái dấu khác 1

\(\Leftrightarrow\left\{{}\begin{matrix}1+1+m+1\ne0\\x_1x_2=m+1< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne-3\\m< -1\end{matrix}\right.\)

12 tháng 5 2020

a)\(\Delta=m^2+4m+4\ge0\forall x\in R\)

7 tháng 7 2015

bạn cap cả bài nhìn đau mắt gê :3

7 tháng 7 2015

a) Thay \(m=-5\) vào PT ta được:

\(x^2-\left(-5\right)x+2.\left(-5\right)-3=0\)

\(\Rightarrow x^2+5x-10-3=0\)

\(\Rightarrow x^2+5x-13=0\)

\(\Delta=5^2-4.1.\left(-13\right)=25+52=77>0\)

PT có 2 nghiệm phân biệt:

\(x_1=-\frac{5+\sqrt{77}}{2}\)

\(x_2=-\frac{5-\sqrt{77}}{2}\)

Vậy với m = -5 thì PT có nghiệm là \(S=\left\{-\frac{5+\sqrt{77}}{2};-\frac{5-\sqrt{77}}{2}\right\}\)

b) PT có nghiệm kép \(\Leftrightarrow\Delta=0\Leftrightarrow\left(-m\right)^2-4.1.\left(2m-3\right)=0\)

\(\Leftrightarrow m^2-8m+12=0\Leftrightarrow\left(m-2\right)\left(m-6\right)=0\)

\(\Leftrightarrow\int^{m-2=0}_{m-6=0}\Leftrightarrow\int^{m=2}_{m=6}\)

Vậy với m = 2 và m = 6 thì PT có nghiệm kép.

c) PT có 2 nghiệm trái dấu \(\Leftrightarrow\int^{\Delta>0}_{2m-3<0}\Leftrightarrow\int^{m>6}_{m<\frac{3}{2}}\)(vô lí)

Vậy không có giá trị nào của m thỏa mãn PT có 2 nghiệm trái dấu.

d) Ta có: \(S=x_1+x_2=-\frac{b}{a}=-\frac{\left(-m\right)}{1}=m\)

\(\Rightarrow m=S^{\left(1d\right)}\)

              \(P=x_1x_2=\frac{c}{a}=\frac{2m-3}{1}=2m-3\)

\(\Rightarrow2m-3=P\Rightarrow2m=P+3\Rightarrow m=\frac{P+3}{2}^{\left(2d\right)}\)

Từ \(\left(1d\right)\&\left(2d\right)\)

\(\Rightarrow S=\frac{P+3}{2}\Rightarrow2S=P+3\)

\(\Rightarrow P+3-2S=0\)

\(\Rightarrow x_1x_2+3-2\left(x_1+x_2\right)=0\)

\(\Rightarrow x_1x_2-2x_1-2x_2+3=0\)

Đây là hệ thức giữa 2 nghiệm không phụ thuộc vào m.

e) PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow m>6\)

21 tháng 5 2016

a) x1^2+x2^2=(x1+x2)^2-2x1x2

x1^3+x2^3=(x1+x2)(x1^2+x2^2-x1x2)

áp dụng viét thay vô

b) giải hệ pt

đenta>=0

x1+x2=-m

x1x2=m+3

và 2x1+3x2=5

c)thay x=-3 vào tìm ra m rồi thay m đó vô giải ra lại

d)áp dụng viét 

x1+x2=-m

x1x2=m+3

CT liên hệ ko phụ thuộc m là x1 +x2+x1x2=-m+m+3=3

1 tháng 4 2019

b) 

+) Với m=0 , phương trình (1) trở thành -x+1=0 <=> x=1

+) Với m khác 0 , (1) là phương trình bậc nhất một ẩn

Xét \(\Delta=\left(2m+1\right)^2-4.m\left(m+1\right)=4m^2+4m+1-4m^2-4m=1>0\)

=> m khác 0 phương trình (1) có hai ngiệm phân biệt

Vậy pt (1) luôn có nghiệm với mọi giá trị của m

c)  Với m =0 phương trình (1) có nghiệm bằng 1< 2 loại

Với m khác 0 

Gọi \(x_1,x_2\)là hai nghiệm phân biệt của phương trình (1)

Khi đó áp dụng định lí Vi-et:

\(\hept{\begin{cases}x_1+x_2=\frac{2m+1}{m}\\x_1.x_2=m+1\end{cases}}\)

21 tháng 4 2020

 giải thích vì sao

21 tháng 4 2020

m khác 2 nha bn

Học tốt

9 tháng 11 2019

+) Cho pt: 2x+ mx + m - 3 = 0. Chứng minh rằng pt có 2 nghiệm phân biệt

Ta có: \(a=2;b=m;c=m-3.\)
\(\text{Δ}=b^2-4ac=m^2-4.2.\left(m-3\right)=m^2-8m+24-\left(m-4\right)^2+8\)

=> đpcm

+) Cho pt: x2 - 2(2m-1)x + 3m2 - 4 = 0. Chứng minh rằng pt luôn có nghiệm với mọi m;  Tìm m để x12 + x22 - x1x= 5 (*)

Ta có: \(a=1;b'=-\left(2m-1\right);c=3m^2-4\)

\(\text{Δ′}=-\left(2m-1\right)^2-1.\left(3m^2-4\right)=4m^2-4m+1-3m^2+4=m^2-4m+5=\left(m-2\right)^2+1\)

=> Pt có nghiệm với mọi m

ta lại có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m-1\left(1\right)\\x_1x_2=\frac{c}{a}=3m^2-4\left(2\right)\end{cases}}\)

(*)\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=5\)

    thay (1) và (2) vào (*) ta có: 

\(\left(2m-1\right)^2-3\left(3m^2-4\right)=5\)

\(\Leftrightarrow4m^2-4m+1-9m^2+12=5\)

\(\Leftrightarrow5m^2+4m-8=0\)

\(\Leftrightarrow\begin{cases}m=\frac{-2+2\sqrt{11}}{2}\\m=\frac{-2-2\sqrt{11}}{2}\end{cases}\)

Vậy \(m=\frac{-2+2\sqrt{11}}{2}\)hoặc \(m=\frac{-2-2\sqrt{11}}{2}\)thoả mãn x12 + x22 - x1x= 5

(Câu này mình nghĩ là tìm m để  x12 + x22 + x1x= 5 thì đúng hơn, nếu đúng thì bạn bình luận để mình làm nhé!)

Học tốt nhé!

25 tháng 2 2021

b Có ∆’ = (m + 1)2 – m2 = 2m + 1

Để pt có 2 nghiệm phân biệt thì 2m + 1 > 0 ⇔ m > - 

Vì x = -2 là nghiệm của pt nên ta có 4 – 4(m + 1) + m2 = 0

⇔ m2 – 4m = 0 ⇔ m = 0 ; m = 4

Vậy với m = 0 ; m = 4 thì pt có 2 nghiệm phân biệt, trong đó có 1 nghiêm = -2