Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2-2=\left[\frac{x_1^2+x^2_2}{x_1x_2}\right]^2-2=\left[\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\right]^2-2\)
\(=\left[\frac{\left(2m-2\right)^2}{2m-5}-2\right]^2-2\)\(=\left(\frac{4m^2-8m+4}{2m-5}-2\right)^2-2=\left(2m-1+\frac{9}{2m-5}\right)^2-2\)
A nguyên khi \(\left(2m-1+\frac{9}{2m-5}\right)^2\in Z\)
\(\Leftrightarrow B=2m-1+\frac{9}{2m-5}=\frac{8m^2-12m+14}{2m-5}\)\(=\sqrt{k}\) với k là một số nguyên dương.
\(\Rightarrow8m^2-12m+14=\sqrt{k}\left(2m-5\right)\)\(\Leftrightarrow8m^2-2\left(6+\sqrt{k}\right)m+14+5\sqrt{k}=0\text{ (1)}\)
(1) có nghiệm m khi \(\Delta'=\left(\sqrt{k}+6\right)^2-8\left(14+5\sqrt{k}\right)\ge0\)
\(\Leftrightarrow k-28\sqrt{k}-76\ge0\Leftrightarrow\sqrt{k}\le14-4\sqrt{17}<0\text{ (loại) hoặc }\sqrt{k}\ge14+4\sqrt{17}\)
\(\Leftrightarrow k\ge\left(14+4\sqrt{17}\right)^2\approx929,78\Rightarrow k\ge930\)
Vậy \(m=\frac{6+\sqrt{k}+\sqrt{k-28\sqrt{k}-76}}{8}\text{ hoặc }m=\frac{6+\sqrt{k}-\sqrt{k-28\sqrt{k}-76}}{8}\) với k là một số nguyên lớn hợn hoặc bằng 930.
a) pt có 2 nghiệm dương <=> \(\Delta\ge0;\int^{x1+x2>0}_{x1.x2>0}\Leftrightarrow4\left(m+1\right)^2-4\left(m-4\right)\ge0;\int^{2m+2>0}_{m-4>0}\Leftrightarrow4m^2+4m+4+16\ge0;\int^{m>-1}_{m>4}\)
=> m>4. (cái kí hiệu ngoặc kia là kí hiệu và nha. tại trên này không có nên dùng tạm cái ý)
b) áp dụng hệ thức vi ét ta có: x1+x2=2m+2; x1.x2=m-4
\(M=\frac{\left(x1+x2\right)^2-2x1x2}{x1-x1.x2+x2-x1.x2}=\frac{\left(2m+2\right)^2-2\left(m-4\right)}{2m+2-2\left(m-4\right)}=\frac{4m^2+6m+12}{10}=\frac{\left(4m^2+6m+\frac{9}{4}\right)+\frac{39}{4}}{10}=\frac{\left(2m+\frac{3}{2}\right)^2+\frac{39}{4}}{10}\)
ta có: \(\left(2m+\frac{3}{2}\right)^2\ge0\Leftrightarrow\left(2m+\frac{3}{2}\right)^2+\frac{39}{4}\ge\frac{39}{4}\Leftrightarrow\frac{\left(2m+\frac{3}{2}\right)^2+\frac{39}{4}}{10}\ge\frac{39}{40}\)=> Min M=39/40 <=>m=-3/4
\(\left(m+1\right)x^2-2\left(m-1\right)x+m-3=0\) (1)
a) Phương trình (1) có 2 nghiệm phân biệt khi và chỉ khi:
\(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-3\right)>0\)
\(\Leftrightarrow\left(m^2-2m+1\right)-\left(m^2-2m-3\right)>0\)
\(\Leftrightarrow4>0\)(luôn đúng)
Vậy phương trình có 2 nghiệm phân biệt với mọi m.
b) Để t nghĩ tí
bài 1: pt (2) hình như có vấn đề
b) \(x^4-7x^2+6=0\Leftrightarrow x^4-x^2-6x^2+6=0\Leftrightarrow\left(x^2-1\right)\left(x^2-6\right)=0\)
=> x^2-1=0 <=> x=+-1 hoặc x^2-6=0 <=> x=+-6
bài 2: ĐK: x >0 và x khác 1
\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}=\frac{\sqrt{x}\left(\sqrt{x^3}-1\right)}{x+\sqrt{x}+1}-\frac{2\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(P=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-2\left(\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-2+2\sqrt{x}+2=\sqrt{x}\left(\sqrt{x}-1\right)\)
b) ví x>0 => \(\sqrt{x}-1>-1\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)>-1\)=> k tìm đc Min
c) \(\frac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{2}{\sqrt{x}-1}\)
để biểu thức này nguyên => \(\sqrt{x}-1\inƯ\left(2\right)\Leftrightarrow\sqrt{x}-1\in\left(+-1;+-2\right)\)
\(\sqrt{x}-1\) | 1 | -1 | 2 | -2 |
x | 4(t/m) | 0(k t/m) | 9(t/m) | PTVN |
=> x thuộc (4;9)
bìa 3: câu này bạn đăng riêng mình làm rồi đó
x2-2(m+2)x+m+1=0 (1)
a/ Xét phương trình (1) có \(\Delta\)=4(m+2)2 - 4.1.(m+1)
= 4m2+12m+12
= (2m+3)2 + 3 >0 với mọi m
Do đó phương trình có 2 nghiệm phân biệt với mọi m
Áp dụng hệ thức Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)\\x_1.x_2=m+1\end{matrix}\right.\)
Ta có: x1,x2 trái dấu \(\Leftrightarrow\) x1.x2<0 \(\Leftrightarrow\) m+1<0 \(\Leftrightarrow\) m<-1
Vậy để phương trình có 2 nghiệm trái dấu thì m<-1
b/ Theo đề bài ta có:
x1(1-2x2) +x2(1-2x1)=m2
\(\Rightarrow\) x1-2x1x2+x2-2x1x2=m2
\(\Rightarrow\)(x1+x2)-4x1x2=m2
\(\Leftrightarrow\)2m+4-4(m+1)=m2
\(\Leftrightarrow\)-m2-2m=0
\(\Leftrightarrow-m\left(m+2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}-m=0\\m+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)
Vậy để x1(1-2x2)+x2(1-2x1)=m2 thì m=0 hoặc m=-2
a. Pt(1) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta=4\left(m-1\right)^2-4.m^2=4\left(m^2-2m+1\right)-4m^2=-8m+4>0\)
\(\Rightarrow m< \frac{1}{2}\)
b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1.x_2=m^2\end{cases}}\)
Từ \(x_1^2+x_2^2-3.x_1.x_2+3=0\Rightarrow\left(x_1+x_2\right)^2-5.x_1.x_2+3=0\)
\(\Rightarrow4\left(m^2-2m+1\right)-5m^2+3=0\Rightarrow-m^2-8m+7=0\)
\(\Rightarrow\orbr{\begin{cases}m=-4-\sqrt{23}\\m=-4+\sqrt{23}\left(l\right)\end{cases}}\)
Vậy \(m=-4-\sqrt{23}\)
Trả lời đc tui chết liền
Sorry