Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\Delta'=m^2-\left(m^2-4\right)=4>0\)
Vậy pt luôn có 2 nghiệm pb x1;x2
Theo Vi et \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m^2-4\end{cases}}\)
Ta có : \(2x_1-3x_2=-1\left(3\right)\)Từ (1) ;(3) ta có hệ
\(\hept{\begin{cases}2x_1+2x_2=4m\\2x_1-3x_2=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}5x_2=4m+1\\x_1=2m-x_2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_2=\frac{4m+1}{5}\\x_1=\frac{10-4m-1}{5}=\frac{-4m+9}{5}\end{cases}}\)
Thay vào (2) ta được \(\frac{\left(4m+1\right)\left(-4m+9\right)}{25}=m^2-4\)
\(\Rightarrow-16m^2+36m-4m+9=25\left(m^2-4\right)\)
\(\Leftrightarrow41m^2-32m-109=0\)
bạn tự tính = delta' nhé, có gì sai bảo mình do số khá to và phức tạp á
b, Ta có \(\left|x_1\right|=\left|x_2\right|\)suy ra
\(\left|\frac{4m+1}{5}\right|=\left|\frac{9-4m}{5}\right|\Rightarrow\left|4m+1\right|=\left|9-4m\right|\)
TH1 : \(4m+1=9-4m\Leftrightarrow8m=8\Leftrightarrow m=1\)
TH2 : \(4m+1=4m-9\left(voli\right)\)
\(x^2-\left(2m+3\right)x-2m-4=0\)
Ta có \(\Delta=\left(2m+3\right)^2+4\left(2m+4\right)\)
\(=4m^2+12m+9+8m+16\)
\(=4m^2+20m+25\)
\(=\left(2m+5\right)^2\)
Để pt có 2 nghiệm phân biệt thì \(\Delta>0\Leftrightarrow m\ne-\frac{5}{2}\)
theo Viet \(\hept{\begin{cases}x_1+x_2=2m+3\\x_1x_2=-2m-4\end{cases}}\)
Ta cso \(\left|x_1\right|+\left|x_2\right|=5\)
\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)^2=5\)
\(\Leftrightarrow x_1^2+2\left|x_1x_2\right|+x_2^2=5\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=5\)
\(\Leftrightarrow\left(2m+3\right)^2-2\left(-2m-4\right)+2\left|-2m-4\right|=5\)
\(\Leftrightarrow4m^2+12m+9+4m+8+4\left|m+2\right|=5\)
\(\Leftrightarrow4m^2+16m+4\left|m+2\right|+12=0\)
Đến đấy bạn xét khoảng của m so với -2 là xong
a) Có: `\Delta'=(m-2)^2-(m^2-4m)=m^2-4m+4-m^2+4m=4>0 forall m`
`=>` PT luôn có 2 nghiệm phân biệt với mọi `m`.
b) Viet: `x_1+x_2=-2m+4`
`x_1x_2=m^2-4m`
`3/(x_1) + x_2=3/(x_2)+x_1`
`<=> 3x_2+x_1x_2^2=3x_1+x_1^2 x_2`
`<=> 3(x_1-x_2)+x_1x_2(x_1-x_2)=0`
`<=>(x_1-x_2).(3+x_1x_2)=0`
`<=> \sqrt((x_1+x_2)^2-4x_1x_2) .(3+x_1x_2)=0`
`<=> \sqrt((-2m+4)^2-4(m^2-4m)) .(3+m^2-4m)=0`
`<=> 4.(3+m^2-4m)=0`
`<=> m^2-4m+3=0`
`<=>` \(\left[{}\begin{matrix}m=3\\m=1\end{matrix}\right.\)
Vậy `m \in {1;3}`.
Áp dụng định lí viet ta có:
\(\hept{\begin{cases}x_1+x_2+x_3=5\\x_1x_2+x_2x_3+x_3x_1=2m+2\end{cases}}\)
Ta có: \(x_1^2+x_2^2+x_3^2=41\)
<=> \(\left(x_1+x_2+x_3\right)^2-2\left(x_1x_2+x_2x_3+x_3x_1\right)=41\)
<=> \(25-2\left(2m+2\right)=41\)
<=> \(m=-5.\)
\(\left(m+1\right)x^2-2\left(m-1\right)x+m-3=0\) (1)
a) Phương trình (1) có 2 nghiệm phân biệt khi và chỉ khi:
\(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-3\right)>0\)
\(\Leftrightarrow\left(m^2-2m+1\right)-\left(m^2-2m-3\right)>0\)
\(\Leftrightarrow4>0\)(luôn đúng)
Vậy phương trình có 2 nghiệm phân biệt với mọi m.
b) Để t nghĩ tí
x^2-3x-(m-1)=0(1)
a)Dể phương trình có 2 nghiệm dương phân biệt:delta>0,S>0,P>0
9+4m-4>0>>>m>-5/4;S=3>0;P=m-1>0>>m>1.
>>>>Để(1) có 2 nghiệm phân biệt thì m>1.
b)x1^3+x2^3=18>>>(x1+x2)(x1^2-x1x2+x2^2)=18>>>x1^2-x1x2+x2^2=6
>>>(x1+x2)^2-3x1x2=6>>>3x1x2=3>>>x1x2=1
-(m-1)=1>>>m=0.
Vậy m=0
Lời giải:
Để PT có 2 nghiệm pb $x_1,x_2$ thì:
\(\Delta'=9-(m+3)>0\Leftrightarrow m< 6(1)\)
Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=6\\ x_1x_2=m+3\end{matrix}\right.\)
Khi đó, để \(x_2=x_1^2\)
\(\Leftrightarrow \left\{\begin{matrix} x_1+x_1^2=6\\ x_1^3=m+3\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} (x_1-2)(x_1+3)=0\\ x_1^3=m+3\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} \left[\begin{matrix} x_1=2\\ x_1=-3\end{matrix}\right.\\ x_1^3=m+3\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} m+3=x_1^3=8\\ m+3=x_1^3=-27\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} m=5\\ m=-30\end{matrix}\right.(2)\)
Từ (1) và (2) suy ra $m=5$ hoặc $m=-30$