\(x^2+2x+m-3\)=0 (với m là tham số).Tìm m để phương trình có hai nghiệm phân biệt...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Δ=2^2-4(m-3)

=4-4m+12=16-4m

Để phương trình có hai nghiệm phân biệt thì 16-4m>0

=>m<4

m(x1^3+x2^3)+(x1*x2)^2=9

=>m[(x1+x2)^3-3x1x2(x1+x2)]+(m-3)^2=9

=>m[(-2)^3-3(m-3)*(-2)]+(m-3)^2=9

=>m[-8+6(m-3)]+(m-3)^2=9

=>m^2-6m+9-9+m[-8+6m-18]=0

=>m^2-6m+m[6m-26]=0

=>m^2-6m+6m^2-26m=0

=>7m^2-32m=0

=>m=0(nhận) hoặc m=32/7(loại)

11 tháng 4 2023

vậy nếu cho x1x2 là hai nghiệm thì sao ạ ( không có phân biệt)

23 tháng 5 2019

\(\Delta=\left(2-m\right)^2-4.\left(-3\right)=\left(m-2\right)^2+12\ge0\) luôn đúng 

Do đó pt luôn có hai nghiệm \(x_1,x_2\) với mọi m 

Ta có : \(\sqrt{x_1^2+2018}-x_1=\sqrt{x_2^2+2018}+x_2\)

\(\Leftrightarrow\)\(x_1^2+2018-2\sqrt{\left(x_1^2+2018\right)\left(x_2^2+2018\right)}+x_2^2+2018=x_1^2+2x_1x_2+x_2^2\)

\(\Leftrightarrow\)\(2018-\sqrt{\left(x_1x_2\right)^2+2018\left(x_1+x_2\right)^2-4036x_1x_2+2018^2}=x_1x_2\) (*) 

Theo định lý Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=m-2\\x_1x_2=-3\end{cases}}\)

(*) \(\Leftrightarrow\)\(2018-\sqrt{\left(-3\right)^2+2018\left(m-2\right)^2-4036.\left(-3\right)+2018^2}=-3\)

\(\Leftrightarrow\)\(9+2018\left(m-2\right)^2+12108+2018^2=2021^2\)

\(\Leftrightarrow\)\(2018\left(m-2\right)^2=0\)

\(\Leftrightarrow\)\(m=2\)

Vậy với m=2 thì hai nghiệm pt thoả mãn \(\sqrt{x_1^2+2018}-x_1=\sqrt{x_2^2+2018}+x_2\)

Ta có phương trình \(x^2-5x+m=0\)

Để PT có nghiệm thì \(\Delta=25-4m\ge0\)

\(\Rightarrow m\le\frac{25}{4}\)

Theo hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=m\end{cases}}\)

do đó \(\left|x_1-x_2\right|=5\Leftrightarrow\left(x_1-x_2\right)^2=25\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_2x_2=25\)

\(\Leftrightarrow4x_1x_2=0\)

\(\Rightarrow m=0\)(TM)

Vậy..........

5 tháng 6 2021

Ta có: \(\Delta^'=\left(2-m\right)^2-1\cdot\left(-3\right)=\left(m-2\right)^2+3>0\left(\forall m\right)\)

=> PT luôn có 2 nghiệm phân biệt

Theo hệ thức viete ta có: \(\hept{\begin{cases}x_1+x_2=2m-4\\x_1x_2=-3\end{cases}}\)

\(\Rightarrow\left|x_1x_2^2\right|+\left|x_1^2x_2\right|=18\)

\(\Leftrightarrow\left|x_1x_2\right|\left(\left|x_1\right|+\left|x_2\right|\right)=18\)

\(\Leftrightarrow\left|x_1\right|+\left|x_2\right|=6\) 

Xét dấu x tự giải ra nhé

4 tháng 6 2021

\(\Delta^'=\left(-1\right)^2-\left(m-1\right)=2-m\)

Để PT có nghiệm thì: \(m\le2\)

Khi đó theo hệ thức viet ta có: \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=m-1\end{cases}}\)

Ta có: \(x_1^4-x_1^3=x_2^4-x_2^3\)

\(\Leftrightarrow\left(x_1^4-x_2^4\right)-\left(x_1^3-x_2^3\right)=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)\left(x_1^2+x_2^2\right)-\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left[2\left(x_1^2+x_2^2\right)-x_1^2-x_1x_2-x_2^2\right]=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left[4-3\left(m-1\right)\right]=0\)

Nếu \(x_1-x_2=0\Rightarrow x_1=x_2=1\Rightarrow m=1\left(tm\right)\)

Nếu \(4-3\left(m-1\right)=0\Rightarrow m=\frac{7}{3}\left(ktm\right)\)

Vậy m = 1

28 tháng 5 2018

tính vi ét & bình phương lên

28 tháng 5 2018

Tính delta => Tìm điều kiện của m để PT có 2 nghiệm x1, x2 là delta > 0.

Áp dụng Viets vào để tìm x1+x2 và x1.x2 theo m.

Sau đó: vì |x1-x2|=3 => (x1-x2)^2=9 <=> x12 + x22 -2x1.x2=9 <=> (x1+x2)2 - 4x1.x2=9

Sau đó thay x1+x2 và x1.x2 (theo Viets) vào để tìm được m.

Đối chiếu với đk của m là được

x2 - 2mx + m2 -2 = 0

\(\Delta\)= 4m2 - 4 (m2 -2)

         = 4m2 - 4m2 + 8 

        = 8 >0

\(\Rightarrow\)pt có 2 nghiệm pb x1 = \(\frac{2m+\sqrt{8}}{2}\)= m +\(\sqrt{2}\)

                                     x2 = m - \(\sqrt{2}\)

ta có \(|\)x13 - x23 \(|\)= 10\(\sqrt{2}\)

           \(|\)(m +\(\sqrt{2}\))3  - (m - \(\sqrt{2}\))3 |= 10 \(\sqrt{2}\)

giải nốt pt này là ra đấy nha

#mã mã#

8 tháng 5 2019

Đầu tiên cần tìm điều kiện của m để phương trình có 2 nghiệm nha bn 

khi đó 

\(x_1+x_2=2m\)

\(x_1.x_2=m^2-2\)

Ta có |\(x_1^3-x_2^3\)|=10\(\sqrt{2}\)

|(x1-x2)(x12-x1.x2+x22)|=10\(\sqrt{2}\)

(x1-x2)2. ((x1+x2)2-x1.x2)2=200 ( bước này là bình phương 2 vế nha bn ) 

(x12+x22-2x1x2) (4m2-m2+2)=200

((x1+x2)2-4x1x2)(3m2+2)=200

(4m2-4m2+8)(3m2+2)=200

3m=23 

=> m=\(\sqrt{\frac{23}{3}}\)hoặc m=\(-\sqrt{\frac{23}{3}}\)

rồi bn đối chiếu điều kiện của m ở trên để phương trình có 2 no phân biệt nha 

( bài mk lm dài có thế có sai sót ...mong bn thông cảm)