Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x1+x2=3; x1*x2=-7
B=(x1+x2)^2-2x1x2
=9-2*(-7)=23
D=(x1+x2)^3-3x1x2(x1+x2)
=3^3-3*(-7)*3
=27+63=90
F=9x1x2+3(x1^2+x2^2)+x1x2
=10x1x2+3*23
=10*(-7)+69
=-1
\(C=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{3^2-4\cdot\left(-7\right)}=\sqrt{37}\)
\(x^2-4x-3=0\)
Theo Vi-ét, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=4\\x_1x_2=\dfrac{c}{a}=-3\end{matrix}\right.\)
Ta có :
\(B=3x_1^2+3x_2^2-5x_1x_2\)
\(=3\left(x_1^2+x_2^2\right)-5x_1x_2\)
\(=3\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-5x_1x_2\)
\(=3[4^2-2.\left(-3\right)]-5.\left(-3\right)\)
\(=81\)
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ bên trái khung soạn thảo) để được hỗ trợ tốt hơn.
Do \(\Delta=5^2+4\cdot3\cdot4=25+48=73>0\) nên PT có 2 nghiệm phân biệt.
Khi đó: \(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}=\frac{-\left(-5\right)}{3}=\frac{5}{3}\\x_1x_2=\frac{c}{a}=\frac{-4}{3}\end{matrix}\right.\)
Từ đây, ta suy ra:
\(A=x_1^3x_2+x_1x_2^3\\ =x_1x_2\left(x_1^2+x^2_2\right)\\ =x_1x_2\left(x_1^2+2x_1x_2+x^2_2-2x_1x_2\right)\\ =x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\\ =\frac{-4}{3}\cdot\left[\left(\frac{5}{3}\right)^2-\frac{-4\cdot2}{3}\right]\\ =\frac{-4}{3}\cdot\frac{25-\left(-8\cdot3\right)}{9}\\ =\frac{-4}{3}\cdot\frac{25+24}{9}\\ =\frac{-4}{3}\cdot\frac{49}{9}=\frac{-196}{27}\)
Chúc bạn học tốt nha.
Ta có:
A = x1x2(x12 + x22) = x1x2[(x1 + x2)2 - 2x1x2]
Ta có: \(\Delta=\left(-5\right)^2-4.3.\left(-4\right)=25+48>0\)
Áp dụng định lý Vi-ét với phương trình 3x2 - 5x - 4 ta có:
x1 + x2 = \(\frac{-\left(-5\right)}{3}=\frac{5}{3}\)
x1x2 = \(\frac{-4}{3}\)
Thay vào A ta được:
A = \(\frac{-4}{3}\left[\left(\frac{5}{3}\right)^2-2.\frac{-4}{3}\right]=\frac{-4}{3}.\left(\frac{25}{9}+\frac{8}{3}\right)=\frac{-4}{3}.\frac{49}{3}=\frac{-196}{3}\)
(P/s: CÓ thể SAI)
a) Thay x=-1 vào pt có:5+m=0 <=> m=-5
Thay m=-5 vào pt có:\(x^2-4x-5=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
Vậy nghiệm còn lại là 5
b) Để pt có hai nghiệm <=> \(\Delta\ge\) <=>\(16-4m\ge0\) <=>\(m\le4\)
Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m\end{matrix}\right.\)
Có \(\left(3x_1+1\right)\left(3x_2+1\right)=4\)
\(\Leftrightarrow9x_1x_2+3\left(x_1+x_1\right)+1=4\)
\(\Leftrightarrow9m+3.4+1=4\)
\(\Leftrightarrow m=-1\) (thỏa)
Vậy m=-1
a) `x=-1` là nghiệm `=> (-1)^2-4.(-1)+m=0 <=> m=-5`
`=>` PT: `x^2-4x-5=0 =>` Nghiệm còn lại là: `x=5`
b) PT có 2 nghiệm phân biệt `<=> \Delta'>0 <=> 2^2-m>0 <=> m < 4`
Viet: `x_1+x_2=4`
`x_1x_2=m`
Theo đề: `(3x_1+1)(3x_2+1)=4`
`<=> 3x_1x_2+3(x_1+x_2)+1=4`
`<=> 3m+3.4+1=4`
`<=> m=-9`
Vậy `m=-9`.
a: Khi m=1/2 thì \(x^2-2x-\dfrac{1}{4}-4=0\)
\(\Leftrightarrow x^2-2x-\dfrac{17}{4}=0\)
\(\Leftrightarrow4x^2-8x-17=0\)
\(\Leftrightarrow\left(2x-2\right)^2=21\)
hay \(x\in\left\{\dfrac{\sqrt{21}+2}{2};\dfrac{-\sqrt{21}+2}{2}\right\}\)
b: \(\text{Δ}=\left(-2\right)^2-4\left(-m^2-4\right)\)
\(=4+4m^2+16=4m^2+20>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
\(pt:2x^2-2\left(m-1\right)x+3m-8=0\)
\(a.\)Thay \(m=3:pt\Leftrightarrow2x^2-4x+1=0\)
\(\Delta=\left(-4\right)^2-4.2.1=8>0\Rightarrow\left\{{}\begin{matrix}x_1=\frac{4+\sqrt{8}}{2.2}=\frac{2+\sqrt{2}}{2}\\x_2=\frac{4-\sqrt{8}}{2.2}=\frac{2-\sqrt{2}}{2}\end{matrix}\right.\)
\(b.\Delta=\left(-2m+2\right)^2-4.2.\left(3m-8\right)=4-8m+4m^2-24m+64=4m^2-32m+68=\left(2m-8\right)^2+4>0\forall m\)
\(\Rightarrow pt\) luôn có 2 nghiệm phân biệt với mọi m
\(c.\) Theo hệ thức Vi-et: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=\frac{3m-8}{2}\end{matrix}\right.\)
\(\left(3x_1-1\right)\left(3x_2-1\right)=23\Leftrightarrow9x_1x_2-3\left(x_1+x_2\right)+1=23\Leftrightarrow9.\frac{3m-8}{2}-3\left(m-1\right)=22\Rightarrow m=\frac{110}{21}\)
( Số nó xấu hay mình làm sai :<<)
a)
5x2+ 12x- 30= 0
x( 5x +12- 30)= 0
\(\orbr{\begin{cases}x=0\\5x+12-30=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\5x+12=30\end{cases}}\)
\(\orbr{\begin{cases}x=0\\5x=30-12\end{cases}}\)
\(\orbr{\begin{cases}x=0\\5x=18\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=18:5\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=\frac{18}{5}\end{cases}}\)
Vậy PT có tập nghiệm là T={18/5;0}
P/s: chị nhớ thêm dấu tương đương vào PT nhé :)
a, Ta có \(\Delta=\left(-3\right)^2-4.\left(-1\right).2=9+8=17>0\)
Nên pt có 2 nghiệm phân biệt
\(x_1=\frac{3-\sqrt{17}}{4};x_2=\frac{3+\sqrt{17}}{4}\)
b,A/D hệ thức vi et ta có
\(\hept{\begin{cases}x_1+x_2=\frac{3}{2}\\x_1x_2=-\frac{1}{2}\end{cases}}\)
ý cậu như nào >?
Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-2\\x_1x_2=\frac{c}{a}=-12\end{cases}}\)
mà : \(3x_1-x_1x_2+3x_2\Leftrightarrow3\left(x_1+x_2\right)-x_1x_2\)
\(\Leftrightarrow3.\left(-2\right)-\left(-12\right)=-6+12=6\)
Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}\\x_1x_2=\frac{c}{a}\end{cases}}\)
Khi đó : 3x1 - x1x2 + 3x2 = 3( x1 + x2 ) - x1x2 = -3b/a - c/a = -3b-c/a = -6+12/1 = 6