K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

d) Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1\cdot x_2=4m-3\end{matrix}\right.\)

Ta có: \(A=x_1^2+x_2^2+2\left(x_1+x_2\right)=\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)\)

\(\Rightarrow A=4m^2-8m+6-4m=4m^2-12m+6\)\(=4\left(m^2-3m+\frac{3}{2}\right)=4\left(m^2-2\cdot m\cdot\frac{3}{2}+\frac{9}{4}-\frac{3}{4}\right)=4\left(m-\frac{3}{2}\right)^2-3\ge-3\)

Dấu "=" xảy ra \(\Leftrightarrow m=\frac{3}{2}\)

30 tháng 6 2020

a) Thay m=3 vào pt ta được:

\(x^2+6x+9=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy x = 3 là nghiệm của pt khi m = 3

b)

Xét pt: \(x^2+2mx+4m-3=0\)

\(\Delta'=m^2-\left(4m-3\right)=m^2-4m+3=\left(m-3\right).\left(m-1\right)\)

để pt có nghiệm kép \(\Leftrightarrow\Delta'=0\Leftrightarrow\left(m-3\right).\left(m-1\right)=0\Leftrightarrow\left[{}\begin{matrix}m=3\\m=1\end{matrix}\right.\)

Vậy m \(\in\left\{1;3\right\}\) là giá trị cần tìm

24 tháng 1 2019

Không biết câu 1 đề là m2x hay là mx ta ? Bởi nếu đề như vậy đenta sẽ là bậc 4 khó thành bình phương lắm

Làm câu 2 trước vậy , câu 1 để sau

a, pt có nghiệm \(x=2-\sqrt{3}\)

\(\Rightarrow pt:\left(2-\sqrt{3}\right)^3+a\left(2-\sqrt{3}\right)^2+b\left(2-\sqrt{3}\right)-1=0\)

\(\Leftrightarrow26-15\sqrt{3}+7a-4a\sqrt{3}+2b-b\sqrt{3}-1=0\)

\(\Leftrightarrow\sqrt{3}\left(4a+b+15\right)=7a+2b+25\)

Vì VP là số hữu tỉ

=> VT là số hữu tỉ

Mà \(\sqrt{3}\)là số vô tỉ

=> 4a + b + 15 = 0

=> 7a + 2b + 25 = 0

Ta có hệ \(\hept{\begin{cases}4a+b=-15\\7a+2b=-25\end{cases}}\)

Dễ giải được \(\hept{\begin{cases}a=-5\\b=5\end{cases}}\)

b, Với a = -5 ; b = 5 ta có pt:

\(x^3-5x^2+5x-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x^2-4x+1=0\left(1\right)\end{cases}}\)

Giả sử x1 = 1 là 1 nghiệm của pt ban đầu

          x2 ; x3 là 2 nghiệm của pt (1)

Theo Vi-ét \(\hept{\begin{cases}x_2+x_3=4\\x_2x_3=1\end{cases}}\)

Có: \(x_2^2+x_3^2=\left(x_2+x_3\right)^2-2x_2x_3=16-2=14\)

     \(x_2^3+x_3^3=\left(x_2+x_3\right)\left(x^2_2-x_2x_3+x_3^2\right)=4\left(14-1\right)=52\)

\(\Rightarrow\left(x_2^2+x_3^2\right)\left(x_2^3+x_3^3\right)=728\)

\(\Leftrightarrow x_2^5+x_3^5+x_2^2x_3^2\left(x_2+x_3\right)=728\)

\(\Leftrightarrow x^5_2+x_3^5+4=728\)

\(\Leftrightarrow x_2^5+x_3^5=724\)

  Có \(S=\frac{1}{x_1^5}+\frac{1}{x_2^5}+\frac{1}{x_3^5}\)

            \(=1+\frac{x_2^5+x_3^5}{\left(x_2x_3\right)^5}\)

            \(=1+724\)

             \(=725\)

Vậy .........

25 tháng 1 2019

Câu 1 đây , lừa người quá

Giả sử pt có 2 nghiệm x1 ; x2

Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=m^2\\x_1x_2=2m+2\end{cases}}\)

\(Do\text{ }m\inℕ^∗\Rightarrow\hept{\begin{cases}S=m^2>0\\P=2m+2>0\end{cases}\Rightarrow}x_1;x_2>0\)       

Lại có \(x_1+x_2=m^2\inℕ^∗\)

Mà x1 hoặc x2 nguyên

Nên suy ra \(x_1;x_2\inℕ^∗\)

Khi đó : \(\left(x_1-1\right)\left(x_2-1\right)\ge0\)

\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1\ge0\)

\(\Leftrightarrow2m+2-m^2+1\ge0\)

\(\Leftrightarrow-1\le m\le3\)

Mà \(m\inℕ^∗\Rightarrow m\in\left\{1;2;3\right\}\)

Thử lại thấy m = 3 thỏa mãn

Vậy m = 3

28 tháng 4 2019

a, Ta có \(\Delta'=\left(m-1\right)^2-m^2+9\)

                    \(=m^2-2m+1-m^2+9\)

                     \(=10-2m\)

Để pt có nghiệm kép thì \(\Delta'=0\Leftrightarrow m=5\)

Với m = 5 thì pt có nghiệm kép \(x=\frac{-b'}{a}=\frac{m-1}{1}=\frac{5-1}{1}=4\)

b,Để pt có nghiệm thì \(\Delta'\ge0\Leftrightarrow m\le5\)

Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2-9\end{cases}}\)

Ta có \(\frac{x_1^2+x_2^2}{2}-x_1-x_2=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{2}-\left(x_1+x_2\right)\)

                                            \(=\frac{\left(x_1+x_2\right)^2}{2}-x_1x_2-\left(x_1+x_2\right)\)

                                             \(=\frac{4\left(m-1\right)^2}{2}-m^2+9-2\left(m-1\right)\)

                                             \(=2\left(m-1\right)^2-m^2+9-2m+2\)

                                               \(=2m^2-4m+2-m^2+9-2m+2\)

                                                \(=m^2-6m+13\)

                                                \(=\left(m-3\right)^2+4\ge4\)

Dấu "=" xảy ra <=> m = 3 (tm)

6 tháng 4 2017

Bài 1/

a/ Ta có: ∆' = (m - 1)2 + 3 + m

= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)

Vậy PT luôn có 2 nghiệm phân biệt.

Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)

 Theo đ

6 tháng 4 2017

Bài 1/

a/ Ta có: ∆' = (m - 1)2 + 3 + m

= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)

Vậy PT luôn có 2 nghiệm phân biệt.

Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)

Theo đề bài thì

\(x^2_2+x^2_1\ge10\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(-3-m\right)\ge0\)

Làm tiếp sẽ ra. Câu còn lại tương tự 

21 tháng 3 2017

a) ( a = 1; b = -2(m+3); c = m^2 + 3 )

   \(\Delta=b^2-4ac\)

      \(=\left[-2\left(m+3\right)\right]^2-4.1.\left(m^2+3\right)\)

      \(=4\left(m^2+6m+9\right)-4m^2-12\)

      \(=4m^2+24m+36-4m^2-12\)

      \(=24m-24\)

Để pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow24m-24>0\Leftrightarrow m>1\)

b) 

* Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=2\left(m+3\right)\\P=x_1x_2=\frac{c}{a}=m^2+3\end{cases}}\)

Ta có: \(x_1^2+x_2^2\)

        \(=S^2-2P\)

        \(=\left[2\left(m+3\right)\right]^2-2.\left(m^2+3\right)\)

         \(=4\left(m^2+6m+9\right)-2m^2-6\)

         \(=4m^2+24m+36-2m^2-6\)

          \(=2m^2+24m+30\)

\(\frac{1}{x_1}+\frac{1}{x_2}\)

 \(=\frac{x_1+x_2}{x_1x_2}\)

 \(=\frac{S}{P}\)

 \(=\frac{2\left(m+3\right)}{m^2+3}\)

  \(=\frac{2m+6}{m^2+3}\)

10 tháng 6 2016

Áp dụng hệ thức Vi-et, ta có : 

\(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1.x_2=-\left(2m+3\right)\end{cases}}\)

Đặt \(A=\left|\frac{x_1+x_2}{x_1-x_2}\right|\ge0\). A đạt giá trị nhỏ nhất \(\Leftrightarrow A^2\)đạt giá trị nhỏ nhất.

Ta có : \(A^2=\left(\frac{x_1+x_2}{x_1-x_2}\right)^2=\frac{\left(x_1+x_2\right)^2}{\left(x_1+x_2\right)^2-4x_1.x_2}=\frac{4\left(m+1\right)^2}{4\left(m+1\right)^2+4\left(2m+3\right)}=\frac{4\left(m+1\right)^2}{4m^2+16m+16}=\frac{\left(m+1\right)^2}{\left(m+2\right)^2}\ge0\)

Suy ra \(MinA^2=0\Leftrightarrow m=-1\) 

Vậy Min A = 0 \(\Leftrightarrow\)m = -1

10 tháng 6 2016

ở bài này phải chỉ ra \(\Delta'\)lớn hơn hoặc bằng 0 , hoặc chỉ ra a và c trái dấu nên phương trình có 2 nghiệm x1,x2 thì mới được áp dụng hệ thức Viét

24 tháng 5 2020

\(x^2+3x+m-3=0\)

Ta có \(\Delta=b^2-4ac\)

             \(=3^2-4.1.\left(m-3\right)\)

             \(=9-4m+12\)

             \(=21-4m\)

Đẻ pt có 2 nghiệm \(x_1;x_2\)\(\Leftrightarrow\Delta\ge0\Leftrightarrow21-4m\ge0\)

                                                  \(\Leftrightarrow x\le\frac{21}{4}\)

Áp dụng vi-ét ta có 

\(\hept{\begin{cases}x_1+x_2=-3\\x_1.x_2=m-3\end{cases}}\)

Ta có \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=5\Leftrightarrow\frac{x_1^2+x_2^2}{x_1.x_2}=5\)

                                        \(\Leftrightarrow x_1^2+x_2^2=5x_1x_2\)

                                        \(\Leftrightarrow x_1^2+x_2^2-5x_1.x_2=0\)

                                       \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-5x_1x_2=0\)

                                        \(\Leftrightarrow\left(x_1+x_2\right)^2-7x_1x_2=0\)

                                       \(\Leftrightarrow\left(-3\right)^2-7\left(m-3\right)=0\)

                                        \(\Leftrightarrow9-7m+21=0\)

                                        \(\Leftrightarrow30-7m=0\)

                                        \(\Leftrightarrow7m=30\)

                                       \(\Leftrightarrow m=\frac{30}{7}\) (TM)

Vậy \(m=\frac{30}{7}\) thì thỏa mãn bài toán 

25 tháng 5 2020

vẽ hộ cái hình

8 tháng 5 2018

xét pt \(x^2-\left(m-1\right)x-m^2+m-1=0\)   \(\left(1\right)\)

từ (1) có  \(\Delta=\left[-\left(m-1\right)\right]^2-4.\left(-m^2+m-1\right)\)

\(\Delta=m^2-2m+1+4m^2-4m+4\)

\(\Delta=5m^2-6m+5\)

\(\Delta=5\left(m^2-\frac{6}{5}m+1\right)\)

\(\Delta=5\left[m^2-2.\frac{3}{5}m+\frac{9}{25}-\frac{9}{25}+1\right]\)

\(\Delta=5\left[\left(m-\frac{3}{5}\right)^2+\frac{16}{25}\right]>0\forall m\)

\(\Rightarrow pt\left(1\right)\)  luôn có 2 nghiệm phân biệt \(\forall m\)

ta có vi - ét \(\hept{\begin{cases}x_1+x_2=m-1\\x_1.x_2=-m^2+m-1\end{cases}}\)

theo bài ra \(\left|x_2\right|-\left|x_1\right|=2\)

\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)=4\)

\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1.x_2\right|=4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2+2\left|x_1.x_2\right|=4\)

\(\Leftrightarrow\left(m-1\right)^2-2\left(-m^2+m-1\right)+2\left|x_1.x_2\right|=4\)

\(\Leftrightarrow m^2-2m+1+2m^2-2m+2+2\left|x_1.x_2\right|=4\)

\(\Leftrightarrow3m^2-4m+3+2\left|x_1.x_2\right|=4\)

cái này đến đây xét ra 2 trường hợp  rồi đối chiếu với ĐKXĐ là xong 

7 tháng 2 2021

a) Phương trình \(x^2-2mx-2m-1=0\)có các hệ số a = 1; b = - 2m; c = - 2m - 1

\(\Delta=\left(-2m\right)^2-4\left(-2m-1\right)=4m^2+8m+4=4\left(m+1\right)^2\ge0\forall m\)

Vậy phương trình luôn có 2 nghiệm x1, x2 với mọi m (đpcm)

b) Theo Viète, ta có: \(x_1+x_2=2m;x_1x_2=-2m-1\)

Hệ thức \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{-5}{2}\Leftrightarrow2\left(x_1^2+x_2^2\right)=-5x_1x_2\)

\(\Leftrightarrow2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=-5x_1x_2\)hay \(2\left(4m^2+4m+2\right)=10m+5\Leftrightarrow8m^2-2m-1=0\)\(\Leftrightarrow\orbr{\begin{cases}m=\frac{1}{2}\\m=-\frac{1}{4}\end{cases}}\)

Vậy \(m=\frac{1}{2}\)hoặc \(m=-\frac{1}{4}\)thì phương trình có 2 nghiệm x1, x2 thỏa mãn\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{-5}{2}\)