K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2019

\(\Delta=m^2+8m+16-16m=m^2-8m+16=\left(m-4\right)^2\ge0.\)

Vậy pt luôn có 2 nghiệm phân biệt.

Theo vi ét : \(\hept{\begin{cases}x_1+x_2=m+4\\x_1.x_2=4m\end{cases}}\)

\(x_1^2+\left(m+4\right)x_2=16\)

\(\Leftrightarrow x_1^2+\left(x_1+x_2\right)x_2=16\Leftrightarrow x_1^2+x_2^2+x_1x_2=16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2=16\)

\(\Leftrightarrow\left(m+4\right)^2-4m=16\Leftrightarrow m^2+8m+16-4m=16\Leftrightarrow m^2+4m=0\)

\(\Leftrightarrow m\left(m+4\right)=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=-4\end{cases}}\)

27 tháng 3 2021

a/ \(m=4\to x^2-8x+7=0\\\leftrightarrow x^2-7x-x+7=0\\\leftrightarrow x(x-7)-(x-7)=0\\\leftrightarrow (x-1)(x-7)=0\\\leftrightarrow x-1=0\quad or\quad x-7=0\\\leftrightarrow x=1\quad or\quad x=7\)

b/ Pt có 2 nghiệm phân biệt

\(\to \Delta=(-2m)^2-4.1.(2m-1)=4m^2-8m+4=4(m^2-2m+1)=4(m-1)^2\ge 0\)

\(\to m\in \mathbb R\)

c/ Theo Viét

\(\begin{cases}x_1+x_2=2m\\x_1x_2=2m-1\end{cases}\)

Tổng bình phương các nghiệm là 10

\(\to x_1^2+x_2^2\\=(x_1+x_2)^2-2x_1x_2=(2m)^2-2.(2m-1)=4m^2-4m+2\)

\(\to 4m^2-4m+2=10\)

\(\leftrightarrow 4m^2-4m-8=0\)

\(\leftrightarrow m^2-m-2=0\)

\(\leftrightarrow m^2-2m+m-2=0\)

\(\leftrightarrow m(m-2)+(m-2)=0\)

\(\leftrightarrow (m+1)(m-2)=0\)

\(\leftrightarrow m+1=0\quad or\quad m-2=0\)

\(\leftrightarrow m=-1(TM)\quad or\quad m=2(TM)\)

Vậy \(m\in\{-1;2\}\)

8 tháng 4 2018

1) \(\Delta\)' = (-m+2)2 -2m+5 = 4-4m+m2-2m+5 = m2-6m+9 = (m-3)2 \(\ge\) 0

=> pt luôn có nghiệm với mọi m

2) ta có : B = x1(1-x2) + x2(1-x1) < 4

<=>B = x1 - x1x2 + x2 - x1x2 < 4

<=> B = (x1 + x2 ) - 2x1x2 < 4

theo định lí vi - ét ta có \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+4\\x_1x_2=\dfrac{c}{a}=2m-5\end{matrix}\right.\)

=> 2m+4 - 2(2m-5) < 4

=> -2m + 14 < 4

=> -2m < -10

=> m > 5

vậy để pt thỏa mãn B = x1(1-x2) + x2(1-x1) < 4 thì m > 5

9 tháng 4 2018

b=-2(m-2) thì ở Vi- ét x1+x2=2(m-2)=2m-4 chứ bạn ei

26 tháng 4 2021

\(x^2-2mx+2m-3=0\)

\(\Delta^,_x=m^2-2m+3\)

\(=\left(m-1\right)^2+2\ge2>0;\forall m\)

\(\Rightarrow\)pt luôn có 2 nghiệm phân biệt \(x_1,x_2\)

Theo hệ thức Vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=2m-3\end{cases}}\)

Ta có : \(\left(1-x_1\right)^2\left(1-x_2^2\right)=-4\)

\(\Leftrightarrow1-x_1^2-x_2^2+x_1^2x_2^2=-4\)

\(\Leftrightarrow1-\left(x_1^2+x_2^2\right)+\left(x_1x_2\right)^2=-4\)

\(\Leftrightarrow1-\left(x_1+x_2\right)^2+2x_1x_2+\left(x_1x_2\right)^2=-4\)

\(\Leftrightarrow1-4m^2+4m-6+\left(2m-3\right)^2=-4\)

\(\Leftrightarrow-8m+4=-4\)

\(\Leftrightarrow m=1\)

Vậy m=1 thì pt có 2 nghiệm phân biệt \(x_1,x_2\)thỏa mãn hệ thức  \(\left(1-x_1\right)^2\left(1-x_2^2\right)=-4\)

Cho tớ sửa đề làm cho nó dễ nhé == chứ x2^2 mà x1 thôi thì tớ ko có bt lm 

Ta có : \(x^2+\left(-m+2\right)x-6=0\left(a=1;b=-m+2;c=-6\right)\)

Cái chỗ này là mk đổi dấu cho thuận một tí ko ko xét b đc )): lại 1 bước đi vạn dặm đau thì toang =)) 

\(\Delta=\left(-m+2\right)^2-4\left(-6\right)=m^2+4+24=m^2+28\) Vậy : Pt luôn có 2 nghiệm \(\forall x\)

Áp dụng hệ thức Vi et ta có : \(x_1+x_2=m-2;x_1x_2=-6\)

Theo bài ra ta có : \(x_2^2-x_1x_2+\left(m-2\right)x_1^2=16\)

\(\Leftrightarrow\left(x_1^2x_2^2\right)-x_1x_2+\left(m-2\right)=16\)

\(\Leftrightarrow\left(x_1x_2\right)^2-x_1x_2+m-2=16\)

\(\Leftrightarrow\left(-6\right)^2+6+m-2=16\)

\(\Leftrightarrow36+6+m-2=16\Leftrightarrow40+m-16=0\Leftrightarrow m=-24\)