Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-mx-2=0\)
có \(\Delta=\left(-m\right)^2-4.\left(-2\right)=m^2+8>0\forall m\)
theo định lí vi - ét \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=-2\end{cases}}\)
theo bài ra \(2x_1-x^2_1-x_2^2+2x_2\)
\(=2\left(x_1+x_2\right)-\left(x^2_1+x_2^2\right)\)
\(=2\left(x_1+x_2\right)-\left[\left(x_1+x_2\right)^2-2x_1.x_2\right]\)
\(=2m-\left[m^2-2.\left(-2\right)\right]\)
\(=2m-\left(m^2+4\right)\)
\(=2m-m^2-4\)
\(=-\left(m^2-2m+4\right)\)
\(=-\left[\left(m-1\right)^2+3\right]\)
Điều kiện để phương trình có 2 nghiệm phân biệt thì tự làm nha.
Áp dụng vi-et ta được
\(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-2\end{cases}}\)
\(\Rightarrow P=2\left(x_1+x_2\right)-\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\)
\(=2m-\left(m^2+4\right)=-3-\left(m-1\right)^2\le-3\)
tính delta rồi c/m cho (1) luôn có 2 ngiệm phân biệt
áp dụng định lí viet rồi thế vô là tìm dc m rồi xem điều kiên
rồi kết luận
\(x^2+2\left(m+2\right)x+4m-1=0\) \(\left(1\right)\)
\(\Delta'=\left(m+2\right)^2-4m+1\)
\(\Delta'=m^2+4m+4-4m+1\)
\(\Delta'=m^2+5>0\forall m\)
\(\Rightarrow pt\left(1\right)\) luôn có 2 nghiệm pb \(\forall m\)
theo định lí vi - ét \(\hept{\begin{cases}x_1+x_2=-2\left(m+2\right)\\x_1.x_2=4m-1\end{cases}}\)
theo bài ra \(x^2_1+x^2_2=30\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2-30=0\)
\(\Leftrightarrow\left[-2\left(m+2\right)\right]^2-2.\left(4m-1\right)-30=0\)
\(\Leftrightarrow4.\left(m^2+4m+4\right)-8m+2-30=0\)
\(\Leftrightarrow4m^2+16m+16-8m-28=0\)
\(\Leftrightarrow4m^2+8m-12=0\)
\(\Leftrightarrow m^2+2m-3=0\) \(\left(#\right)\)
từ \(\left(#\right)\) ta có \(a+b+c=1+2-3=0\)
\(\Rightarrow pt\left(#\right)\) có 2 nghiệm \(m_1=1;m_2=-3\) ( TM \(\forall m\) )
vậy....
-_- 1/ bạn làm đc
-_- 2/ Bạn hỏi suốt xao giỏi đc
-_- 3/ Bài này dễ ợt
\(mx^2-2\left(m+2\right)x+m^2+7=0\left(a=m;b=-2m-4;c=m^2+7\right)\)
\(\Delta=\left(-2m-4\right)^2-4m\left(m^2+7\right)=4m^2-16-4m^3-28m\ge0\)
Để pt có 2 nghiệm thì \(\Delta\ge0\)P/s : ko chắc cái ĐK này
Theo hệ thức Vi et ta có : \(x_1+x_2=\frac{2m+4}{2};x_1x_2=\frac{m^2+7}{2}\)
Theo bài ra ta có : \(x_1x_2-2\left(x_1x_2\right)=0\)
\(\Leftrightarrow\frac{m^2+7}{2}-2\left(\frac{m^2+7}{2}\right)=0\)
\(\Leftrightarrow\frac{m^2+7}{2}-\frac{2m^2+14}{2}=0\)Khử mẫu ta đc : \(m^2+7-2m^2+14=0\)
\(\Leftrightarrow-m^2+21=0\Leftrightarrow-m^2=-21\Leftrightarrow m^2=21\Leftrightarrow m=\pm\sqrt{21}\)
dùng phương pháp Vi-ét ko hoàn toàn
(mình đăng lên youtube rồi đấy)
\(\Delta=m^2-32\ge0\Rightarrow\left[{}\begin{matrix}m\le-4\sqrt{2}\\m\ge4\sqrt{2}\end{matrix}\right.\)
Từ Viet và điều kiện đề bài ta có: \(\left\{{}\begin{matrix}x_1=x_2^2\\x_1x_2=8\end{matrix}\right.\)
\(\Rightarrow x_2^3=8\Rightarrow x_2=2\Rightarrow x_1=4\)
Mà \(x_1+x_2=m\Rightarrow m=4+2=6\) (t/m)