\(x^2-mx+8=0\left(1\right)\) Tìm m để pt (1) có 2 nghiệm \(x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 5 2020

\(\Delta=m^2-32\ge0\Rightarrow\left[{}\begin{matrix}m\le-4\sqrt{2}\\m\ge4\sqrt{2}\end{matrix}\right.\)

Từ Viet và điều kiện đề bài ta có: \(\left\{{}\begin{matrix}x_1=x_2^2\\x_1x_2=8\end{matrix}\right.\)

\(\Rightarrow x_2^3=8\Rightarrow x_2=2\Rightarrow x_1=4\)

\(x_1+x_2=m\Rightarrow m=4+2=6\) (t/m)

13 tháng 4 2018

\(x^2-mx-2=0\)

có \(\Delta=\left(-m\right)^2-4.\left(-2\right)=m^2+8>0\forall m\)

theo định lí vi - ét \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=-2\end{cases}}\)

theo bài ra \(2x_1-x^2_1-x_2^2+2x_2\)

\(=2\left(x_1+x_2\right)-\left(x^2_1+x_2^2\right)\)

\(=2\left(x_1+x_2\right)-\left[\left(x_1+x_2\right)^2-2x_1.x_2\right]\)

\(=2m-\left[m^2-2.\left(-2\right)\right]\)

\(=2m-\left(m^2+4\right)\)

\(=2m-m^2-4\)

\(=-\left(m^2-2m+4\right)\)

\(=-\left[\left(m-1\right)^2+3\right]\)

13 tháng 4 2018

Điều kiện để phương trình có 2 nghiệm phân biệt thì tự làm nha.

Áp dụng vi-et ta được

\(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-2\end{cases}}\)

\(\Rightarrow P=2\left(x_1+x_2\right)-\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\)

\(=2m-\left(m^2+4\right)=-3-\left(m-1\right)^2\le-3\)

9 tháng 4 2018

tính delta rồi c/m cho (1) luôn có 2 ngiệm phân biệt

áp dụng định lí viet rồi thế vô là tìm dc m rồi xem điều kiên 

rồi kết luận

9 tháng 4 2018

\(x^2+2\left(m+2\right)x+4m-1=0\)    \(\left(1\right)\)  

\(\Delta'=\left(m+2\right)^2-4m+1\)

\(\Delta'=m^2+4m+4-4m+1\)

\(\Delta'=m^2+5>0\forall m\)

\(\Rightarrow pt\left(1\right)\)  luôn có 2 nghiệm pb \(\forall m\)

theo định lí vi - ét \(\hept{\begin{cases}x_1+x_2=-2\left(m+2\right)\\x_1.x_2=4m-1\end{cases}}\)

theo bài ra \(x^2_1+x^2_2=30\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2-30=0\)

\(\Leftrightarrow\left[-2\left(m+2\right)\right]^2-2.\left(4m-1\right)-30=0\)

\(\Leftrightarrow4.\left(m^2+4m+4\right)-8m+2-30=0\)

\(\Leftrightarrow4m^2+16m+16-8m-28=0\)

\(\Leftrightarrow4m^2+8m-12=0\)

\(\Leftrightarrow m^2+2m-3=0\)  \(\left(#\right)\)

từ \(\left(#\right)\)  ta có \(a+b+c=1+2-3=0\)

\(\Rightarrow pt\left(#\right)\)  có 2 nghiệm \(m_1=1;m_2=-3\) ( TM \(\forall m\) ) 

vậy....

20 tháng 5 2018

-_-         1/ bạn làm đc

-_-         2/ Bạn hỏi suốt xao giỏi đc

-_-         3/ Bài này dễ ợt

\(mx^2-2\left(m+2\right)x+m^2+7=0\left(a=m;b=-2m-4;c=m^2+7\right)\)

\(\Delta=\left(-2m-4\right)^2-4m\left(m^2+7\right)=4m^2-16-4m^3-28m\ge0\)

Để pt có 2 nghiệm thì \(\Delta\ge0\)P/s : ko chắc cái ĐK này 

Theo hệ thức Vi et ta có : \(x_1+x_2=\frac{2m+4}{2};x_1x_2=\frac{m^2+7}{2}\)

Theo bài ra ta có : \(x_1x_2-2\left(x_1x_2\right)=0\)

\(\Leftrightarrow\frac{m^2+7}{2}-2\left(\frac{m^2+7}{2}\right)=0\)

\(\Leftrightarrow\frac{m^2+7}{2}-\frac{2m^2+14}{2}=0\)Khử mẫu ta đc : \(m^2+7-2m^2+14=0\)

\(\Leftrightarrow-m^2+21=0\Leftrightarrow-m^2=-21\Leftrightarrow m^2=21\Leftrightarrow m=\pm\sqrt{21}\)

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)a. Tìm m để (1) có 2 nghiệm dương b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyênB2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)a. Tìm m để (1) có 2 nghiệm trái dấub. Tìm m để nghiệm này bằng bình phương nghiệm kiaB3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)a. cmr pt (1) luôn có 2 nghiệm phân...
Đọc tiếp

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)

a. Tìm m để (1) có 2 nghiệm dương 

b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyên

B2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)

a. Tìm m để (1) có 2 nghiệm trái dấu

b. Tìm m để nghiệm này bằng bình phương nghiệm kia

B3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. Tìm m để A=\(x_1^2+x_2^2-3x_1x_2\)đạt GTLN

B4: Cho pt \(x^2+\left(2m+3\right)x+3m+11=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\ne0\)thỏa mãn \(|\frac{1}{x_1}-\frac{1}{x_2}|=\frac{1}{2}\)

B5: cho 2 đường thẳng \(\left(d_1\right):y=\left(m-1\right)x-m^2-m\)và \(\left(d_2\right):y=\left(m-2\right)x-m^2-2m+1\)

a. Xđ tọa độ giao điểm của \(d_1\)và \(d_2\)(điểm G)

b. cmr điểm G thuộc 1 đường thẳng cố định khi m thay đổi

B6: cho pt \(2x^2-4mx+2m^2-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. tìm m để pt (1) có 2 nghiệm thỏa mãn \(2x_1^2+4mx_2+2m^2-1>0\)

B7: cho pt \(x^2-2mx-16+5m^2=0\)(1)

a. tìm m để (1) có nghiệm

b. gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm GTLN và GTNN của biểu thức A=\(x_1\left(5x_1+3x_2-17\right)+x_2\left(5x_2+3x_1-17\right)\)

0
10 tháng 8 2018

dùng phương pháp Vi-ét ko hoàn toàn

(mình đăng lên youtube rồi đấy)

10 tháng 8 2018

xem rồi giùm mk nha