Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để pt có 2 nghiệm pb khác 0:
\(\left\{{}\begin{matrix}m\ne0\\\Delta=1-4m\left(m-1\right)>0\\x_1x_2=\frac{m-1}{m}\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\ne1\\-4m^2+4m+1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\ne1\\\frac{1-\sqrt{2}}{2}< m< \frac{1+\sqrt{2}}{2}\end{matrix}\right.\) (1)
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\frac{1}{m}\\x_1x_2=\frac{m-1}{m}\end{matrix}\right.\)
\(\left|\frac{1}{x_1}+\frac{1}{x_2}\right|>1\Leftrightarrow\left|\frac{x_1+x_2}{x_1x_2}\right|>1\)
\(\Leftrightarrow\left|\frac{\frac{-1}{m}}{\frac{m-1}{m}}\right|>1\Leftrightarrow\left|\frac{1}{m-1}\right|>1\)
\(\Leftrightarrow\left|m-1\right|< 1\Leftrightarrow-1< m-1< 1\)
\(\Rightarrow0< m< 2\)
Kết hợp với (1) ta được: \(\left\{{}\begin{matrix}m\ne1\\0< m< \frac{1+\sqrt{2}}{2}\end{matrix}\right.\)
bạn ơi, cái chỗ để pt có 2 nghiệm phânbiệt khác 0 sao chỉ xét x1x2 mà ko xét x1 + x2 luôn ạ
Bài 2 :
a,- Để phương trình có 2 nghiệm phân biệt thì : \(\Delta>0\)
<=> \(m^2-4.1.\left(2m-4\right)>0\)
<=> \(m^2-8m+16>0\)
<=> \(\left(m-4\right)^2>0\)
<=> \(m-4>0\)
<=> \(m>4\)
- Nên phương trình có 2 nghiệm phân biệt là :
\(x_1=\frac{m+\sqrt{m-4}}{2},x_2=\frac{m-\sqrt{m-4}}{2}\)
a, Ta có : \(x^2_1+x_2^2=13\)
=> \(\left(\frac{m+\sqrt{m-4}}{2}\right)^2+\left(\frac{m-\sqrt{m-4}}{2}\right)^2=13\)
=> \(\left(m+\sqrt{m-4}\right)^2+\left(m-\sqrt{m-4}\right)^2=52\)
=> \(m^2+2m\sqrt{m-4}+m-4+m^2-2m\sqrt{m-4}+m-4-52=0\)
=> \(2m^2+2m-60=0\)
=> \(m^2+m-30=0\)
=> \(m^2+\frac{m.2.1}{2}+\frac{1}{4}=30+\frac{1}{4}=\frac{121}{4}\)
=> \(\left(m+\frac{1}{2}\right)^2=\frac{121}{4}\)
=> \(\left[{}\begin{matrix}m=\sqrt{\frac{121}{4}}-\frac{1}{2}=5\left(TM\right)\\m=-\sqrt{\frac{121}{4}}-\frac{1}{2}=-6\left(KTM\right)\end{matrix}\right.\)
Vậy m có giá trị bằng 5 thỏa mãn điều kiện .
b, Làm tương tự nha .
xét pt \(x^2-mx+m-1=0\) \(\left(1\right)\)
xó \(\Delta=\left(-m\right)^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2>0\forall m\ne2\)
\(\Rightarrow pt\) (1) có 2 nghiệm phân biệt \(x_1,x_2\forall m\ne2\)
ta có vi -ét \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=m-1\end{cases}}\)
theo bài ra \(\left|x_1\right|+\left|x_2\right|=6\)
\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)^2=36\)
\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1.x_2\right|=36\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=36\)
\(\Leftrightarrow m^2-2\left(m-1\right)+2\left|m-1\right|=36\)
nếu \(m-1< 0\Rightarrow m^2-4m-32=0\) ta tìm được \(m=8\left(loai\right)\); \(m=-4\left(TM\right)\)
nếu \(m-1\ge0\Rightarrow m^2=36\Rightarrow m=6\left(TM\right);m=-6\left(loai\right)\)
vậy \(m=-4;m=6\) là các giá trị cần tìm
Ta có:
\(x^2-2\left(m+5\right)x+2m+9=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2m-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=2m+9\end{cases}}\)
Thế vô làm nốt
\(mx^2+\left(2m-1\right)x+m-2=0\) (1)
a)
- Nếu m = 0 thì (1) ⇔ - x - 2 = 0 ⇔ x = -2
- Nếu m # 0 thì (1) là phương trình bậc 2
Ta có: △1 = (2m-1)2 - 4m(m-2) = 4m + 1
Để (1) có nghiệm ⇔ △1 ≥ 0 ⇔ 4m + 1 ≥ 0 ⇔ m ≥ \(-\dfrac{1}{4}\)
Vậy để phương trình có nghiệm thì m ≥ \(-\dfrac{1}{4}\)
b) Với m ≥ \(-\dfrac{1}{4}\) thì phương trình có nghiệm x1, x2 nên theo HT Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-2m}{m}\\x_1x_2=\dfrac{m-2}{m}\end{matrix}\right.\)
Theo đầu bài:
x12 + x22 = 2018
⇔ (x1 + x2)2 - 2x1x2 = 2018
⇔ \(\left(\dfrac{1-2m}{m}\right)^2-2.\dfrac{m-2}{m}=2018\)
⇔ \(\dfrac{4m^2-4m+1}{m^2}-\dfrac{2m-4}{m}=2018\)
⇔ \(\dfrac{4m^2-4m+1-m\left(2m-4\right)}{m^2}=2018\)
⇔ \(\dfrac{4m^2-4m+1-2m^2+4m}{m^2}=2018\)
⇔ 2m2 + 1 = 2018m2
⇔ 2016m2 = 1
⇔ m2 = \(\dfrac{1}{2016}\)
⇔ \(\left[{}\begin{matrix}m=\sqrt{\dfrac{1}{2016}}\left(TM\right)\\m=-\sqrt{\dfrac{1}{2016}}\left(TM\right)\end{matrix}\right.\) ...
Vậy m ∈ \(\left\{\pm\sqrt{\dfrac{1}{2016}}\right\}\)
có 2 nghiệm phân biệt chi và chỉ khi \(\Delta^,=\left(m-2\right)^2-m^2-2m+3>0\)
\(\Leftrightarrow m^2-4m+4-m^2-2m+3>0\)
\(\Leftrightarrow-6m+7>0\Leftrightarrow m< \frac{7}{6}\)
\(x_1+x_2=-2\left(m-1\right)\) ; \(x_1=-6m+5\)
\(\Rightarrow x_2=-2\left(m-1\right)-\left(-6m+5\right)=4m-3\)
Anh Mai
c/
Ta có:
\(x_1+x_2+2x_1x_2\le6\)
\(\Leftrightarrow-2\left(m-1\right)+2\left(-2m+5\right)\le6\)
\(\Leftrightarrow-2m+2-4m+10\le6\)
\(\Leftrightarrow-6m\le-6\)
\(\Rightarrow m\ge1\)
Kết hợp với điều kiện \(\Delta\) ta có: \(m\ge2\)
Lời giải:
Để pt có 2 nghiệm phân biệt $x_1,x_2$ thì:
$\Delta=m^2+4(m+1)>0\Leftrightarrow (m+2)^2>0\Leftrightarrow m\neq -2(*)$
Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=-m\\ x_1x_2=-(m+1)\end{matrix}\right.\)
Khi đó:
$x_1^2+x_2^2< 2$
$\Leftrightarrow (x_1+x_2)^2-2x_1x_2< 2$
$\Leftrightarrow m^2+2(m+1)< 2$
$\Leftrightarrow m^2+2m< 0$
$\Leftrightarrow m(m+2)< 0\Leftrightarrow -2< m< 0(**)$
Từ $(*); (**)\Rightarrow m\in (-2;0)$ là đáp án cần tìm.
\(a+b+c=0\)
Do vai trò của 2 nghiệm như nhau nên pt có 2 nghiệm \(\left\{{}\begin{matrix}x_1=1\\x_2=-m-1\end{matrix}\right.\)
Để pt có 2 nghiệm pb \(\Leftrightarrow-m-1\ne1\Rightarrow m\ne-2\)
\(x_1^2+x_2^2< 2\)
\(\Leftrightarrow1+\left(m+1\right)^2< 2\)
\(\Leftrightarrow m^2+2m< 0\Rightarrow-2< m< 0\)