Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
tính denlta là xong mà bạn
Tình yêu sao khác thường
Đôi lúc ta thật kiên cường
Nhiều người trách mình điên cuồng
Cứ lao theo dù không lối ra
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(\text{Δ}=\left(2m-1\right)^2-4\left(m-1\right)\)
\(=4m^2-4m+1-4m+4=4m^2-8m+5\)
\(=\left(4m^2-8m+4\right)+5=4\left(m-1\right)^2+5>0\)
=>Phương trình luôn có hai nghiệm phân biệt
b: Để phương trình có hai nghiệm trái dấu thì m-1<0
hay m<1
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\Delta\)= b2-4ac=\([-2\left(m-1\right)\)2-4.1.(m-3)
=4(m2-2m+1)-4m+12
=4m2-12m+16=(2m-3)2+7>0
Vậy pt luôn có 2 nghiệm phân biệt với mọi m
b)Vì pt luôn có 2 nghiệm phân biệt với m
Theo vi ét ta có:x1+x2=\(\frac{-b}{a}\)= 2m-2=S (1)
x1.x2=\(\frac{c}{a}\)=m-3=P (2)
Từ(1)\(\Rightarrow2m=S+2\)
\(\Rightarrow m=\frac{S+2}{2}\left(3\right)\)
Từ(2)\(\Rightarrow m=P-3\left(4\right)\)
Từ (3) và(4)\(\Rightarrow\frac{S+2}{2}=P-3\)
\(\Leftrightarrow S+2-2P+6=0\)
\(\Leftrightarrow S-P+8=0\)
Do đó\(\Leftrightarrow\left(x_1+x_2\right)-\left(x._1.x_2\right)+8=0\left(đfcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
b)
+) Với m=0 , phương trình (1) trở thành -x+1=0 <=> x=1
+) Với m khác 0 , (1) là phương trình bậc nhất một ẩn
Xét \(\Delta=\left(2m+1\right)^2-4.m\left(m+1\right)=4m^2+4m+1-4m^2-4m=1>0\)
=> m khác 0 phương trình (1) có hai ngiệm phân biệt
Vậy pt (1) luôn có nghiệm với mọi giá trị của m
c) Với m =0 phương trình (1) có nghiệm bằng 1< 2 loại
Với m khác 0
Gọi \(x_1,x_2\)là hai nghiệm phân biệt của phương trình (1)
Khi đó áp dụng định lí Vi-et:
\(\hept{\begin{cases}x_1+x_2=\frac{2m+1}{m}\\x_1.x_2=m+1\end{cases}}\)