Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Để \(PT\) có 2 nghiệm phân biệt khi \(\Delta'=\left(m-1\right)^2-\left(3-m\right)\)
\(=m^2-2m+1-3+m=m^2-m-2=\left(m-2\right)\left(m+1\right)>0\Leftrightarrow\orbr{\begin{cases}m< -1\\m>2\end{cases}}\)
Do đó để \(PT\)có 2 nghiệm phân biệt trái dấu khi \(\hept{\begin{cases}m\notin\left[-1;2\right]\\3-m< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m\notin\left[-1;2\right]\left(1\right)\\m>3\left(TM\left(1\right)\right)\end{cases}}\)
Vậy \(m>3\) thì \(PT\) có 2 nghiệm trái dấu
b) Theo \(vi-et\: \) ta có :
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(2m-2\right)^2-2.\left(3-m\right)=4m^2-6m-2\)
Kết hợp với đề bài ta được : \(4m^2-6m-2\ge10\Leftrightarrow4m^2-6m-12\ge0\Leftrightarrow2m^2-3m-4\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}x\le\frac{3-\sqrt{41}}{4}\\\frac{3+\sqrt{41}}{4}\le x\end{cases}}\)
a, \(x^2-2\left(m-1\right)x-3-m=0\left(a=1;b=-2m+2;c=-3-m\right)\)
Để phương trình có 2 nghiệm trái dấu thì \(ac< 0\)hay
\(-3-m< 0\Leftrightarrow m< -3\)
b, Theo hệ thức Vi et ta có : \(x_1+x_2=2m-2;x_1x_2=-3-m\)(tđz)
Theo bài ra ta có : \(x_1^2+x_2^2\ge10\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)
Thay tđz bên trên vào ta đc : \(\left(2m-2\right)^2-2\left(-3-m\right)\ge10\)
\(\Leftrightarrow4m^2-4+6+2m\ge10\)
\(\Leftrightarrow4m^2+2+2m\ge10\Leftrightarrow3m^2-8+2m\ge0\)
Áp dụng HĐT đáng quên ra luôn =((
Câu 1:
Trước hết để pt có 2 nghiệm (phân biệt) thì:
\(\Delta'=6^2-2(2m-1)>0\)
\(\Leftrightarrow m< \frac{19}{2}\)
Khi đó, với $x_1,x_2$ là 2 nghiệm của pt, áp dụng định lý Vi-et ta có: \(x_1+x_2=6\)
Nếu PT có 2 nghiệm đều nhỏ hơn $1$ thì $x_1+x_2<2$ (mâu thuẫn với điều trên)
Do đó không tồn tại $m$ để pt có 2 nghiệm đều nhỏ hơn $1$
Câu 2:
Trước tiên để pt có 2 nghiệm phân biệt thì:
\(\Delta=5^2-4(m+4)>0\)
\(\Leftrightarrow m< \frac{9}{4}\)
Khi đó, áp dụng định lý Vi-et ta có:\(\left\{\begin{matrix} x_1+x_2=5\\ x_1x_2=m+4\end{matrix}\right.\)
a)
\(3=|x_1-x_2|=\sqrt{(x_1-x_2)^2}\)
\(\Leftrightarrow 3=\sqrt{x_1^2-2x_1x_2+x_2^2}\)
\(\Leftrightarrow 3=\sqrt{(x_1+x_2)^2-4x_1x_2}=\sqrt{25-4(m+4)}\)
\(\Leftrightarrow 25-4(m+4)=9\Leftrightarrow m=0\) (thỏa mãn)
b)
\(|x_1|+|x_2|=4\)
\(\Leftrightarrow |5-x_2|+|x_2|=4\)
Ta luôn có BĐT \(4=|5-x_2|+|x_2|\geq |5-x_2+x_2|=5\Rightarrow 4\geq 5\) (vô lý)
Do đó không tồn tại $m$ thỏa mãn điều kiện đã cho.
câu 1:
Áp dụng hệ thức Vi-ét ta đc: \(x_1+x_2=2m+1;x_1x_2=m^2-3\)
có : \(x_1^2+x_2^2-\left(x_1+x_2\right)=8\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=8\Rightarrow\left(2m+1\right)^2-2.\left(m^2-3\right)-\left(2m+1\right)=8\)
\(\Rightarrow2m^2+4m+1-2m^2+6-2m-1=8\Rightarrow2m=2\Rightarrow m=1\)
câu 2 mk k bik lm nha
x2 - (m +2) + 2m = 0
\(\Delta\)= (-1)2(m + 2 ) 2 - 8m
= m2 + 4m + 4 -8m
= m2 - 4m + 4
= (m-2)2 \(\ge\)0 \(\forall\)m
\(\Rightarrow\)pt luôn có 2 nghiệm
theo hệ thức vi ét ta có
x1 + x2 = m + 2
x1 . x2 = 2m
ta có ( x1 + x2 ) 2 - x1x2 \(\le\)5
(m+ 2)2 - 2m \(\le\)5
m2 + 4m + 4 -2m \(\le\)5
m2 + 2m - 1 \(\le\)0
m2 + 2m + 1 \(\le\)2
( m+ 1 )2 \(\le\)2
m + 1 \(\le\sqrt{2}\)
m \(\le\sqrt{2}-1\)
vậy .................. khi m \(\le\)\(\sqrt{2}-1\)
Bảo đảm bài này có thi tuyển sinh nè em !
Theo hệ thức Vi - ét:
\(x_1+x_2=-\frac{b}{a}=\frac{m+2}{1}=m+2\)
\(x_1.x_2=\frac{c}{a}=\frac{2m}{1}=2m\)
Theo đề bài:
\(\left(x_1+x_2\right)^2-x_1x_2\le5\)
\(\left(m+2\right)^2-2m\le5\)
\(\Leftrightarrow m^2+4m+4-2m\le5\)
\(\Leftrightarrow m^2+2m-1\le0\)
\(\Leftrightarrow\orbr{\begin{cases}m\ge-1-\sqrt{2}\\m\le-1+\sqrt{2}\end{cases}}\) ( Cái này dùng máy tính bấm ra nha: (VN PLUS: more \(\downarrow\)1 1) (580VN X: menu A 2 4) )
( Còn nếu bài yêu cầu giải tay thì anh có giải tay ở phía dưới nha. )
\(\Leftrightarrow m\in\left[-1-\sqrt{2};-1+\sqrt{2}\right]\)
Vậy \(\left(x_1+x_2\right)^2-x_1x_2\le5,\forall m\in\left[-1-\sqrt{2};-1+\sqrt{2}\right]\)
Giải tay nè:
\(m^2+2m-1\le0\)
\(Cho:m^2+2m-1=0\)
\(\Delta=2^2-4.1.\left(-1\right)=8>0\)
\(\sqrt{\Delta}=\sqrt{8}=2\sqrt{2}\)
pt có 2 nghiệm pb:
\(x_1=\frac{-2+2\sqrt{2}}{2.1}=\frac{2.\left(-1+\sqrt{2}\right)}{2}=-1+\sqrt{2}\)
\(x_2=\frac{-2-2\sqrt{2}}{2.1}=\frac{2\left(-1-\sqrt{2}\right)}{2}=-1-\sqrt{2}\)
Bảng xét dấu:
x m^2+2m-1 -oo -1- v2 -1+ v2 +oo 0 o - + +
Vậy: \(m\in\left[-1-\sqrt{2};-1+\sqrt{2}\right]\)
HỌC TỐT !!!!
\(x^2+\left(m-1\right)x-6=0\)
Do \(a.c=-6< 0\Rightarrow\) pt luôn có 2 nghiệm phân biệt
Khi đó \(\left\{{}\begin{matrix}x_1+x_2=1-m\\x_1x_2=-6\Rightarrow x_1x_2+6=0\end{matrix}\right.\)
\(A=\left(x^2_1-9\right)\left(x_2^2-4\right)=\left(x_1-3\right)\left(x_2-2\right)\left(x_1+3\right)\left(x_2+2\right)\)
\(=\left(x_1x_2+6-2x_1-3x_2\right)\left(x_1x_2+6+2x_1+3x_2\right)\)
\(=-\left(2x_1+3x_2\right)\left(2x_1+3x_2\right)=-\left(2x_1+3x_2\right)^2\le0\)
\(\Rightarrow A_{max}=0\) khi \(2x_1+3x_2=0\)
Kết hợp với hệ thức Viet ta được: \(\left\{{}\begin{matrix}x_1x_2=-6\\2x_1+3x_2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{-3x_2^2}{2}=-6\\x_1=\dfrac{-3x_2}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_2=2\\x_1=-3\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x_2=-2\\x_1=3\end{matrix}\right.\)
\(\Rightarrow m=1-\left(x_1+x_2\right)\Rightarrow\left[{}\begin{matrix}m=2\\m=0\end{matrix}\right.\)
\(a-b+c=1+m-1-m=0\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x=-1\\x=m\end{matrix}\right.\)
Để 2 nghiệm pb và nhỏ hơn 1
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\m< 1\end{matrix}\right.\)