\(x^2-\left(2m-3\right)x+m^2-3m=0\)

a/ xác định m để pt có 2 nghiệm thỏa:...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 2 2017

Lời giải:

a) Để PT có hai nghiệm pb thì \(\Delta=(2m-3)^2-4(m^2-3m)>0\)

\(\Leftrightarrow 9>0\) (luôn đúng với mọi \(m\in\mathbb{R}\) )

Ta có PT tương đương \((x-m)(x-m+3)=0\)

\(\Rightarrow\left\{\begin{matrix}x_1=m-3\\x_2=m\end{matrix}\right.\). Để hai nghiệm thuộc khoảng \((1,6)\) thì :

\(1< m,m-3<6\Rightarrow 4< m<6\)

b) Từ phần a) suy ra hệ thức độc lập là \(x_1-x_2=-3\)

c) \(A=x_2^3-x_1^3=m^3-(m-3)^3=9m^2-27m+27=9(m-\frac{3}{2})^2+\frac{27}{4}\geq \frac{27}{4}\)

Do đó \(A_{\min}=\frac{27}{4}\Leftrightarrow m=\frac{3}{2}\)

8 tháng 5 2020

cho mik hỏi câu b chút, mik chưa hiểu tại sao1<m,m-3<6 lại suy ra đc 4<m<6 vậy ?

a: Khi m=2 thì pt sẽ là \(x^2-2=0\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

b: \(\text{Δ}=\left(2m-3\right)^2-4\left(m^2-3m\right)\)

\(=4m^2-12m+9-4m^2+12m=9>0\)

Do đó: PT luôn có hai nghiệm phân biệt

Để PT có 2 nghiệm dương thì \(\left\{{}\begin{matrix}2m-3>0\\m^2-3m>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{3}{2}\\m\in\left(-\infty;0\right)\cup\left(3;+\infty\right)\end{matrix}\right.\Leftrightarrow m\in\left(3;+\infty\right)\)

Để pt có 2 nghiệm trái dấu thì m(m-3)<0

=>0<m<3

5 tháng 6 2018

1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0

Nếu x-5=0 suy ra x=5

Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0

Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0

Suy ra x=1 hoặc x=6.

4 tháng 7 2020

bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)

\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)

\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)

thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)

\(\left(++\right)< =>x-5=0< =>x=5\)

Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)

NV
28 tháng 4 2020

\(\Delta=4m^2-12m+9-4\left(m^2-3m\right)=9>0;\forall m\)

Phương trình luôn có 2 nghiệm với mọi m

Đặt \(f\left(x\right)=x^2-\left(2m-3\right)x+m^2-3m\)

Để pt có 2 nghiệm thỏa mãn \(1< x_1< x_2< 6\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(1\right)>0\\f\left(6\right)>0\\1< \frac{x_1+x_2}{2}< 6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2-5m+4>0\\m^2-15m+54>0\\2< 2m-3< 12\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>4\\m< 1\end{matrix}\right.\\\frac{5}{2}< m< \frac{15}{2}\end{matrix}\right.\) \(\Rightarrow4< m< \frac{15}{2}\)