K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^2-6x+2m-3=0\)

\(\Delta=b^2-4ac=36-4\left(2m-3\right)=36-8m+12=48-8m\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)\(< =>48-8m>0< =>48>8m< =>6>m\)

Theo Vi-ét ta có :\(\hept{\begin{cases}x_1x_2=\frac{c}{a}=2m-3\\x_1+x_2=\frac{-b}{a}=6\end{cases}}\)là 

\(x_1\)là nghiệm phương trình \(x_1^2-6x_1+2m-3=0\)

\(=>x_1^2=3-2m+6x_1\)

\(x_2\)là nghiệm phương trình \(x_2^2-6x_2+2m-3=0\)

\(=>x_2^2=3-2m+6x_2\)

Mà \(\left(x_1^2-5x_1+2m-4\right)\left(x_2^2-5x_2+2m-4\right)=2\)

\(\left(3-2m+6x_1-5x_1+2m-4\right)\left(3-2m+6x_2-5x_2+2m-4\right)=2\)

\(\left(3+x_1-4\right)\left(3+x_2-4\right)=2\)

\(\left(x_1-1\right)\left(x_2-1\right)=2\)

\(x_1x_2-x_1-x_2+1=2\)

\(x_1x_2-\left(x_1+x_2\right)=1\)

\(2m-3-6=1\)

\(2m-9=1\)

\(m=5\)

Vậy m=5