Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(A=\frac{6n-1}{3n+1}=\frac{2\left(3n+1\right)-3}{3n+1}=2-\frac{3}{3n+1}\)
Để A đạt GTNN thì \(\frac{3}{3n-1}\) phải đạt giá trị lớn nhất
\(\Rightarrow\hept{\begin{cases}\frac{3}{3n-1}>0\\3n-1\text{ đạt giá trị nhỏ nhất}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3n-1>0\\3n\text{ đạt giá trị nhỏ nhất}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}n>\frac{1}{3}\\n\text{ đạt giá trị nhỏ nhất}\end{cases}}\)
Mà n thuộc Z => n = 1
\(\Rightarrow A_{min}=\frac{6.1-1}{3.1+1}=\frac{5}{4}\Leftrightarrow n=1\)
b) Điều kiện để A là phân số:
\(\hept{\begin{cases}6n-1\inℤ\\3n+1\inℤ\\3n+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}n\inℤ\\n\inℤ\\n\ne-\frac{1}{3}\end{cases}}}\)
Mà n thuộc Z => n luôn ≠ \(-\frac{1}{3}\)
Vậy để A là phân số thì n thuộc Z
c) A có giá trị nguyên <=> 6n - 1 chia hết cho 3n + 1
Có: 3n + 1 chia hết cho 3n + 1
=> 6n + 2 chia hết cho 3n + 1
=> 6n + 2 - (6n - 1) chia hết cho 3n + 1
=> 6n + 2 - 6n + 1 chia hết cho 3n + 1
=> 3 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(3) = {-3; -1; 1; 3}
=> 3n thuộc {-4; -2; 0; 2}
Mà n thuộc Z => 3n chia hết cho 3
=> 3n = 0
=> n = 0
Vậy để A thuộc Z thì n = 0



Sửa lại:... :v
Q(x) = 3x3 - 4x2 + 3x - 4x - 4x3 + 5x2 + 1
= (3x3 - 4x3) + (5x2 - 4x2) + (3x - 4x) + 1
= -x3 + x2 - x + 1
=> M(x) = 2x2 + 3
N(x) = 2x3 + 2x + 1
Câu c chỉ cần thay số 5 thành số 3 là được nhé!
a. P(x) = 2x3 - 2x + x2 - x3 + 3x + 2
= (2x3 - x3) + x2 + (3x - 2x) + 2
= x3 + x2 + x + 2
Q(x) = 3x3 - 4x2 + 3x - 4x - 4x3 + 5x2 + 1
= (3x3 - 4x3) + (5x2 - 4x2) + (3x - 4x) + 1
= -x3 + x2 - x + 3
b. M(x) = P(x) + Q(x)
= x3 + x2 + x + 2 - x3 + x2 - x + 3
= (x3 - x3) + (x2 + x2) + (x - x) + (2 + 3)
= 2x2 + 5
N(x) = P(x) - Q(x)
= x3 + x2 + x + 2 - (- x3 + x2 - x + 3)
= x3 + x2 + x + 2 + x3 - x2 + x - 3
= (x3 + x3) + (x2 - x2) + (x + x) + (2 - 3)
= 2x3 + 2x - 1
c. Ta có: 2x2 \(\ge\) 0 với mọi x
\(\Rightarrow\) 2x2 + 5 > 0
\(\Rightarrow\) Đa thức M(x) vô nghiệm (đpcm)
∆' = (-2)² - [-(m² + 3m)]
= 4 + m² + 3m
= m² + 3m + 9/4 + 7/4
= (m + 3/2)² + 7/4 > 0 với mọi m ∈ R
Vậy phương trình luôn có hai nghiệm phân biệt với mọi m ∈ R
Δ=(-4)^2-4(-m^2-3m)
=16+4m^2+12m
=4m^2+12m+16
Để phương trình có 2 nghiệm phân biệt thì
4m^2+12m+16>0
=>m^2+3m+4>0
=>m^2+3m+9/4+7/4>0
=>(m+3/2)^2+7/4>0(luôn đúng)