\(x^2-4\sqrt{3}x+8=0\) có 2 nghiệm x1,x2. ko giải pt, tính Q =
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 4 2020

Bạn vẫn ko hiểu vấn đề à?

\(6\left(x_1^2+x_2^2\right)=6\left(x_1+x_2\right)^2-12x_1x_2\)

Không phải là \(6\left(x_1^2+x_2^2\right)=6\left(x_1+x_2\right)^2-2x_1x_2\) như bạn nghĩ.

Hiểu chưa ạ? Ko tin hãy khai triển ra, sao bạn ko khai triển để kiểm tra mà cứ thắc mắc kiểu kì cục vậy ta?

Anh Mai

NV
15 tháng 4 2020

\(\left\{{}\begin{matrix}x_1+x_2=4\sqrt{3}\\x_1x_2=-8\end{matrix}\right.\)

\(Q=\frac{6\left(x_1+x_2\right)^2-2x_1x_2}{5x_1x_2\left(x_1^2+x_2^2\right)}=\frac{6\left(x_1+x_2\right)^2-2x_1x_2}{5x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]}\)

\(Q=\frac{6.\left(4\sqrt{3}\right)^2-2.\left(-8\right)}{5.\left(-8\right).\left[\left(4\sqrt{3}\right)^2-2.\left(-8\right)\right]}\)

Casio bấm nốt kết quả

NV
22 tháng 4 2020

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-3\end{matrix}\right.\)

\(A=\frac{6\left(x_1+x_2\right)^2-2x_1x_2}{5x_1x_2\left(x_1^2+x_2^2\right)}=\frac{6\left(x_1+x_2\right)^2-2x_1x_2}{5x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]}=\frac{6.\left(-2\right)^2-2\left(-3\right)}{5.\left(-3\right)\left[\left(-2\right)^2-2\left(-3\right)\right]}=-\frac{1}{5}\)

\(B=\frac{3\left(x_1+x_2\right)^2-x_1x_2}{4x_1x_2\left(x_1+x_2\right)}=\frac{3\left(-2\right)^2-\left(-3\right)}{4.\left(-3\right)\left(-2\right)}=\frac{15}{24}=\frac{5}{8}\)

NV
12 tháng 7 2020

Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3\sqrt{3}\\x_1x_2=1\end{matrix}\right.\)

\(A=\frac{3\left(x_1^2+x_2^2+2x_1x_2\right)-x_1x_2}{4x_1x_2\left[x_1^2+x_2^2+2x_1x_2-2x_1x_2\right]}=\frac{3\left(x_1+x_2\right)^2-x_1x_2}{4x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]}\)

\(=\frac{3\left(-3\sqrt{3}\right)^2-1}{4.1.\left[\left(-3\sqrt{3}\right)^2-2.1\right]}=...\)

11 tháng 1 2015

áp dụng hệ thức viet => S= 2\(2\sqrt{3}\) P = 1 thay vào tính

 

11 tháng 1 2015

S = 2\(\sqrt{3}\)

30 tháng 5 2019

Hỏi đáp Toán

21 tháng 5 2021

X2 -5X +m -3 =0     (#)

phtình (#) có 2 nghiệm phân biệt x1x2 

denta >0

(-5)2 - 4 . 1 . (m-3) > 0

25 -4m + 12 > 0

37 -4m >0

m<37/4

với m< 37/4 áp dụng định lí vi ét ta có :

  •  x1 +x2 =5
  • x1x2=m-3          =>  thay x1 + x2 vào (1)/ thay x1x2 vào (1)  
18 tháng 6 2015

bài 1: pt (2) hình như có vấn đề

b) \(x^4-7x^2+6=0\Leftrightarrow x^4-x^2-6x^2+6=0\Leftrightarrow\left(x^2-1\right)\left(x^2-6\right)=0\)

=> x^2-1=0 <=> x=+-1 hoặc x^2-6=0 <=> x=+-6 

bài 2: ĐK: x >0 và x khác 1

\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}=\frac{\sqrt{x}\left(\sqrt{x^3}-1\right)}{x+\sqrt{x}+1}-\frac{2\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(P=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-2\left(\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-2+2\sqrt{x}+2=\sqrt{x}\left(\sqrt{x}-1\right)\)

b)  ví x>0 => \(\sqrt{x}-1>-1\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)>-1\)=> k tìm đc Min

c) \(\frac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{2}{\sqrt{x}-1}\)

để biểu thức này nguyên => \(\sqrt{x}-1\inƯ\left(2\right)\Leftrightarrow\sqrt{x}-1\in\left(+-1;+-2\right)\)

\(\sqrt{x}-1\)1-12-2
x4(t/m)0(k t/m)9(t/m)PTVN

 

=> x thuộc (4;9)

bìa 3: câu này bạn đăng riêng mình làm rồi đó