K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2023

 Ta nhận thấy tổng các hệ số của pt bậc 2 đã cho là \(1-a+a-1=0\) nên pt này có 1 nghiệm là 1, nghiệm kia là \(a-1\), nhưng do không được giải pt nên ta sẽ làm theo cách sau:

 Ta thấy pt này luôn có 2 nghiệm phân biệt. Theo hệ thức Viète:

 \(\left\{{}\begin{matrix}x_1+x_2=a\\x_1x_2=a-1\end{matrix}\right.\)

 Vậy, \(M=\dfrac{3\left(x_1^2+x_2^2\right)-3}{x_1x_2\left(x_1+x_2\right)}\)

\(M=\dfrac{3\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-3}{a\left(a-1\right)}\)

\(M=\dfrac{3\left(a^2-2\left(a-1\right)\right)-3}{a\left(a-1\right)}\)

\(M=\dfrac{3\left[\left(a-1\right)^2-1\right]}{a\left(a-1\right)}\)

\(M=\dfrac{3a\left(a+2\right)}{a\left(a-1\right)}\)

\(M=\dfrac{3a+6}{a-1}\)

b) Ta có \(P=\left(x_1+x_2\right)^2-2x_1x_2=a^2-2\left(a-1\right)=\left(a-1\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow a=1\). Vậy để P đạt GTNN thì \(a=1\)

\(x^2-4x+3=0\)

Theo vi-et, ta có: \(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-4\right)}{1}=4;x_1x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)

Đặt \(A=\sqrt{x_1}+\sqrt{x_2}\)

=>\(A^2=x_1+x_2+2\sqrt{x_1x_2}\)

=>\(A^2=4+2\cdot\sqrt{3}\)

=>\(A=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

\(T=\dfrac{\left(x1\cdot\sqrt{x_2}+x_2\cdot\sqrt{x_1}\right)}{x1^2+x_2^2}\)

\(=\dfrac{\sqrt{x_1\cdot x_2}\left(\sqrt{x_1}+\sqrt{x_2}\right)}{\left(x_1+x_2\right)^2-2x_1x_2}\)

\(=\dfrac{4\cdot\sqrt{x_1+x_2+2\sqrt{x_1x_2}}}{9^2-2\cdot16}=\dfrac{4\cdot\sqrt{9+2\cdot4}}{81-32}\)

\(=\dfrac{4\sqrt{17}}{49}\)

28 tháng 5 2023

Theo vi ét: \(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=8\end{matrix}\right.\)

Theo đề:

\(B=\dfrac{x_1\sqrt{x_1}-x_2\sqrt{x_2}}{x_1-x_2}=\dfrac{\left(\sqrt{x_1}-\sqrt{x_2}\right)\left(x_1+\sqrt{x_1x_2}+x_2\right)}{\left(\sqrt{x_1}-\sqrt{x_2}\right)\left(\sqrt{x_1}+\sqrt{x_2}\right)}\left(x_1,x_2\ge0\right)\)

\(=\dfrac{6+\sqrt{8}}{\sqrt{x_1}+\sqrt{x_2}}\)

Tính: \(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=x_1+x_2+2\sqrt{x_1x_2}=6+2\sqrt{8}=6+4\sqrt{2}=\left(\sqrt{4}+\sqrt{2}\right)^2\)

\(\Rightarrow\sqrt{x_1}+\sqrt{x_2}=\sqrt{4}+\sqrt{2}\) (thỏa mãn \(x_1,x_2\ge0\))

Khi đó: \(P=\dfrac{6+\sqrt{8}}{\sqrt{4}+\sqrt{2}}=4-\sqrt{2}\)

28 tháng 5 2023

bạn gthich giúp mình trên tử với ạ

 

21 tháng 3 2017

Câu c làm tương tự, mẫu số nhân ra và nhóm lại theo dạng: x1+x2 và x1.x2

21 tháng 3 2017

TOÁN HỌC

Toán lớp 2

Bài 1, bài 2, bài 3, bài 4, bài 5 tiết 92.luyện tập (trang 96 sgk)

Bài 1: Số ?,Bài 2: Tính (theo mẫu),Bài 3: Mỗi xe đạp có hai bánh xe. Hỏi 8 xe đạp có bao nhiêu bánh xe ? Bài 4: Viết số thích hợp vào ô trống (theo mẫu),Bài 5: Viết số thích hợp vào ô trống (theo mẫu):

  • Lý thuyết, bài 1, bài 2, bài 3 tiết 93.bảng nhân 3 (trang 97sgk)
  • Bài 1, bài 2, bài 3, bài 4, bài 5 tiết 94.luyện tập (trang 98 sgk)
  • Lý thuyết, bài 1, bài 2, bài 3 tiết 95. bảng nhân 4 (trang 99 sgk)
  • Bài 1, bài 2, bài 3, bài 4 tiết 96.luyện tập (trang 100 sgk)

Xem thêm: CHƯƠNG V: PHÉP NHÂN VÀ PHÉP CHIA

Bài 1: Số ?

Bài 2: Tính (theo mẫu)

2cm x 3 = 6cm                          2kg x 4 =

2cm x 5 =                                2kg x 6 = 

2dm x 8 =                                2kg x 9 =

Bài 3: Mỗi xe đạp có hai bánh xe. Hỏi 8 xe đạp có bao nhiêu bánh xe ?

Bài 4: Viết số thích hợp vào ô trống (theo mẫu):

Bài 5: Viết số thích hợp vào ô trống (theo mẫu):

Bài giải:

Bài 1:

Bài 2:

2cm x 3 = 6cm                                2kg x 4 = 8kg

2cm x 5 = 10cm                               2kg x 6 = 12kg 

2dm x 8 = 16cm                               2kg x 9 = 18kg

Bài 3: 

Số bánh xe của 78 xe đạp là:

2 x 8 = 16 (bánh xe)

Đáp số: 16 bánh xe.

Bài 4: Hướng dẫn: Điền lần lượt từ trái sang phải vào các ô trống còn lại là: 12, 18, 20, 14, 10, 16, 4.

Bài 5:

Hướng dẫn: Điền lần lượt từ trái sang phải vào các ô trống các số là: 10, 14, 18, 20, 4.

Bài viết liên quan

Các bài khác cùng chuyên mục

  • Bài 1, bài 2, bài 3, bài 4, bài 5 trang 180 sgk toán lớp 2 (12/01)
  • Bài 1, bài 2, bài 3, bài 4, bài 5 trang 180,181 sgk toán lớp 2 (12/01)
  • Bài 1, bài 2, bài 3, bài 4, bài 4 trang 177, 178 sgk toán lớp 2 (12/01)
  • Bài 1, bài 2, bài 3, bài 4 trang 178,179 sgk toán lớp 2 (12/01)
  • Bài 1, bài 2, bài 3, bài 4, bài 5 trang 181 sgk toán lớp 2 (12/01)



Xem thêm tại: http://loigiaihay.com/bai-1-bai-2-bai-3-bai-4-bai-5-tiet-92luyen-tap-c114a15865.html#ixzz4bgVSXCQi

(căn x1+căn x2)^2=x1+x2+2*căn x1x2

=12+2*căn 4=16

=>căn x1+căn x2=4

\(T=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{4}=\dfrac{12^2-2\cdot4}{4}=34\)

16 tháng 5 2017

Theo vi-et thì ta có:

\(\hept{\begin{cases}x_1+x_2=\frac{3a-1}{2}\\x_1x_2=-1\end{cases}}\)

Từ đây ta có: 

\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=\left(\frac{3a-1}{2}\right)^2-4.1=\left(\frac{3a-1}{2}\right)^2-4\)

Theo đề bài thì 

\(P=\frac{3}{2}.\left(x_1-x_2\right)^2+2\left(\frac{x_1-x_2}{2}+\frac{1}{x_1}-\frac{1}{x_2}\right)^2\)

\(=\frac{3}{2}.\left(x_1-x_2\right)^2+2.\left(x_1-x_2\right)^2\left(\frac{1}{2}-\frac{1}{x_1x_2}\right)^2\)

\(=\left(x_1-x_2\right)^2\left(\frac{3}{2}+2.\left(\frac{1}{2}-\frac{1}{x_1x_2}\right)^2\right)\)

\(=\left(\left(\frac{3a-1}{2}\right)^2-4\right)\left(\frac{3}{2}+2.\left(\frac{1}{2}+1\right)^2\right)\)

\(=6\left(\left(\frac{3a-1}{2}\right)^2-4\right)\ge6.4=24\)

Dấu = xảy ra khi \(a=\frac{1}{3}\)