Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\Delta'=1-\left(2m-5\right)=6-2m\)
để pt có nghiệm kép \(6-2m=0\Leftrightarrow m=3\)
b, để pt có 2 nghiệm pb \(6-2m>0\Leftrightarrow m< 3\)
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=2m-5\end{matrix}\right.\)
Ta có \(\left(x_1+x_2\right)^2-7x_1x_2=0\)
\(4-7\left(2m-5\right)=0\Leftrightarrow2m-5=\dfrac{4}{7}\Leftrightarrow m=\dfrac{39}{14}\)(tm)
a) Xét pt \(x^2-2x+2m-5=0\), có \(\Delta'=\left(-1\right)^2-\left(2m-5\right)=1-2m+5=6-2m\)
Để pt có nghiệm kép thì \(\Delta'=0\)hay \(6-2m=0\)\(\Leftrightarrow m=3\)
b) Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\)hay \(6-2m>0\)\(\Leftrightarrow m< 3\)
Khi đó, ta có \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-5\end{cases}}\)(hệ thức Vi-ét)
Từ đó \(x_1^2+x_2^2=5x_1x_2\)\(\Leftrightarrow\left(x_1+x_2\right)^2=7x_1x_2\)\(\Leftrightarrow2^2=7\left(2m-5\right)\)\(\Leftrightarrow4=14m-35\)\(\Leftrightarrow14m=39\)\(\Leftrightarrow m=\frac{39}{14}\)(nhận)
Vậy để [...] thì \(m=\frac{39}{14}\)
Lập: \(\Delta'=b'^2-ac=1^2-1.\left(m-1\right)=1-m+1=2-m\)
Phương trình có hai nghiệm phân biệt khi: \(\Delta>0\Leftrightarrow2-m>0\Leftrightarrow m< 2\)
Áp dụng hệ thức Vi-et, ta có:
\(x_1+x_2=\frac{-b}{a}=\frac{2}{1-m};x_1x_2=\frac{c}{a}=\frac{1}{m-1}\)
Thay \(x_1=2x_2\)vào rồi tự giải tiếp nha, mk lười viết công thức quá
ta có \(\Delta'=4-m\)
để pt có 2 nghiệm phân biệt thì \(\Delta'>0\Leftrightarrow m< 4\)
vì x1 là nghiệm của pt trên nên ta có
\(x_1^2-2x_1+m-3=0\Rightarrow x_1^2=2x_1-m+3\)
vậy \(x_1^2-2x_2+x_1x_2=2\left(x_1-x_2\right)-m+3+m-3=2\left(x_1-x_2\right)=-12\)
\(\Rightarrow x_1-x_2=-6\)
theo vi-ét ta có
\(\left\{{}\begin{matrix}x_1-x_2=-6\\x_1+x_2=2\\x_1x_2=m-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-2\\x_2=4\\m-3=-8\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x_1=-2\\x_2=4\\m=-5\end{matrix}\right.\)vậy m=-5
\(x^2+2x+m-3=0\left(x+1\right)^2=4-m\Leftrightarrow\)(1)
(1) có 2 No.có nghiệm: \(\Leftrightarrow4-m>0\Rightarrow m< 4\) (*)
Hai nghiệm là : \(\left[\begin{matrix}x_1=1-\sqrt{4-m}\\x_2=1+\sqrt{4-m}\end{matrix}\right.\Rightarrow\left(I\right)\left\{\begin{matrix}x_1x_2=m-3\\x_1+x_2=2\end{matrix}\right.\)
\(x^3_1x_2+x_1x^3_2=x_1x_2\left(x^2_1+x_2^2\right)=x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=-6\)
Thay x1&x2 theo m từ (I) vào ta có :
\(\left(m-3\right)\left[2^2-2\left(m-3\right)\right]=4\left(m-3\right)-2\left(m-3\right)^2=-6\)
\(\Leftrightarrow\left(m-3\right)^2-2\left(m-3\right)-6=0\Rightarrow\left\{\begin{matrix}m_1=4-\sqrt{7}\\m_2=4+\sqrt{7}\end{matrix}\right.\)
từ (*) \(\Rightarrow m=4+\sqrt{7}\)
+) Cho pt: 2x2 + mx + m - 3 = 0. Chứng minh rằng pt có 2 nghiệm phân biệt
Ta có: \(a=2;b=m;c=m-3.\)
\(\text{Δ}=b^2-4ac=m^2-4.2.\left(m-3\right)=m^2-8m+24-\left(m-4\right)^2+8\)
=> đpcm
+) Cho pt: x2 - 2(2m-1)x + 3m2 - 4 = 0. Chứng minh rằng pt luôn có nghiệm với mọi m; Tìm m để x12 + x22 - x1x2 = 5 (*)
Ta có: \(a=1;b'=-\left(2m-1\right);c=3m^2-4\)
\(\text{Δ′}=-\left(2m-1\right)^2-1.\left(3m^2-4\right)=4m^2-4m+1-3m^2+4=m^2-4m+5=\left(m-2\right)^2+1\)
=> Pt có nghiệm với mọi m
ta lại có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m-1\left(1\right)\\x_1x_2=\frac{c}{a}=3m^2-4\left(2\right)\end{cases}}\)
(*)\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=5\)
thay (1) và (2) vào (*) ta có:
\(\left(2m-1\right)^2-3\left(3m^2-4\right)=5\)
\(\Leftrightarrow4m^2-4m+1-9m^2+12=5\)
\(\Leftrightarrow5m^2+4m-8=0\)
\(\Leftrightarrow\begin{cases}m=\frac{-2+2\sqrt{11}}{2}\\m=\frac{-2-2\sqrt{11}}{2}\end{cases}\)
Vậy \(m=\frac{-2+2\sqrt{11}}{2}\)hoặc \(m=\frac{-2-2\sqrt{11}}{2}\)thoả mãn x12 + x22 - x1x2 = 5
(Câu này mình nghĩ là tìm m để x12 + x22 + x1x2 = 5 thì đúng hơn, nếu đúng thì bạn bình luận để mình làm nhé!)
Học tốt nhé!
1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0
Nếu x-5=0 suy ra x=5
Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0
Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0
Suy ra x=1 hoặc x=6.
bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)
\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)
\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)
thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)
\(\left(++\right)< =>x-5=0< =>x=5\)
Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)
\(\Delta'=1-\left(m-3\right)=4-m>0\Rightarrow m< 4\)
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m-3\end{matrix}\right.\)
Ngoài ra, do \(x_1\) là nghiệm của pt nên:
\(x_1^2-2x_1+m-3=0\Rightarrow x_1^2=2x_1-m+3\)
Ta có:
\(x_1^2+2x_2+x_1x_2+12=0\)
\(\Leftrightarrow2x_1-m+3+2x_2+x_1x_2+12=0\)
\(\Leftrightarrow2\left(x_1+x_2\right)+x_1x_2-m+15=0\)
\(\Leftrightarrow2.2+m-3-m+15=0\)
\(\Leftrightarrow16=0\) (vô lý)
\(\Rightarrow\) Không tồn tại m thỏa mãn