K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2020

a) Δ' = \(m^2-m+2>0\)

⇒ PT luôn có hai nghiệm

b) Theo Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m-2\end{matrix}\right.\)

Ta có: \(x^2_1+x^2_2-6x_1x_2=\left(x_1+x_2\right)^2-8x_1x_2\)\(=4m^2-8m+16=\left(2m-2\right)^2+12\ge12\)

\(\Rightarrow\)M \(\ge\frac{-24}{12}=-2\)

Vậy min M = \(\frac{-24}{12}\Leftrightarrow m=1\)

8 tháng 6 2017

đúng r đó bn, nhìn nè:

\(\left(x_1-x_2\right)\left(x_1x_2+1\right)=x_1^2x_2+x_1-x_1x_2^2-x_2\)

3 tháng 6 2017

Để pt (1) có nghiệm thì: \(\Delta>0\)\(\Leftrightarrow m^2+4>0\)

\(\Rightarrow\)đúng với \(\forall m\) ( vì \(m^2>0\) và 4 hiển nhiên >0)

theo viet, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-1\end{matrix}\right.\)

ta có \(P=\dfrac{x_1^2+x_1-1}{x_1}-\dfrac{x_2^2+x_2-1}{x_2}\)

\(\Leftrightarrow P=\dfrac{x_1^2x_2+x_1x_2-x_2-x_1x_2^2-x_1x_2+x_1}{x_1x_2}\)

\(\Leftrightarrow P=\dfrac{\left(x_1-x_2\right)\left(x_1x_2+1\right)}{x_1x_2}=\dfrac{\left(x_1-x_2\right)0}{x_1x_2}\)( vì \(x_1x_2=-1\) mà -1+1=0)

\(\Leftrightarrow P=0\)

3 tháng 6 2019

\(\Delta^`\ge0\)

\(\Leftrightarrow m^2-\left(m^2-2\right).2\ge0\)

\(\Leftrightarrow4-m^2\ge0\)

\(\Leftrightarrow4\ge m^2\)

\(\Leftrightarrow4\ge m^2\)

\(\Leftrightarrow-2\le m\le2\)

3 tháng 6 2019

Theo hệ thức Viet có:

\(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=\frac{m^2-2}{2}\end{cases}}\)

\(\Rightarrow A=\left|2x_1.x_2-x_1-x_2-4\right|=\left|m^2-m-6\right|=\left|\left(m-\frac{1}{2}\right)^2-6,25\right|\)

Có:

\(\left(m-\frac{1}{2}\right)^2\le\left(-2-\frac{1}{2}\right)^2=6,25\)

\(\Rightarrow A=\left|\left(m-\frac{1}{2}\right)^2-6,25\right|=6,25-\left(m-\frac{1}{2}\right)^2\le6,25\)

\(A=6,25\Leftrightarrow m=\frac{1}{2}\left(tm\right)\)

KL:..............................................

7 tháng 2 2021

a) Phương trình \(x^2-2mx-2m-1=0\)có các hệ số a = 1; b = - 2m; c = - 2m - 1

\(\Delta=\left(-2m\right)^2-4\left(-2m-1\right)=4m^2+8m+4=4\left(m+1\right)^2\ge0\forall m\)

Vậy phương trình luôn có 2 nghiệm x1, x2 với mọi m (đpcm)

b) Theo Viète, ta có: \(x_1+x_2=2m;x_1x_2=-2m-1\)

Hệ thức \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{-5}{2}\Leftrightarrow2\left(x_1^2+x_2^2\right)=-5x_1x_2\)

\(\Leftrightarrow2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=-5x_1x_2\)hay \(2\left(4m^2+4m+2\right)=10m+5\Leftrightarrow8m^2-2m-1=0\)\(\Leftrightarrow\orbr{\begin{cases}m=\frac{1}{2}\\m=-\frac{1}{4}\end{cases}}\)

Vậy \(m=\frac{1}{2}\)hoặc \(m=-\frac{1}{4}\)thì phương trình có 2 nghiệm x1, x2 thỏa mãn\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{-5}{2}\)

AH
Akai Haruma
Giáo viên
30 tháng 4 2019

Lời giải:

Trước tiên, để pt có 2 nghiệm phân biệt ($x_1,x_2$) thì:

\(\Delta'=(m+2)^2-(m^2-9)>0\)

\(\Leftrightarrow 4m+13>0\leftrightarrow m> \frac{-13}{4}\)

Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=2(m+2)\\ x_1x_2=m^2-9\end{matrix}\right.\)

Khi đó:

\(|x_1-x_2|=x_1+x_2\)

\(\Rightarrow \left\{\begin{matrix} x_1+x_2=2(m+2)\geq 0 \\ (x_1-x_2)^2=(x_1+x_2)^2\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} m\geq -2\\ (x_1+x_2)^2-4x_1x_2=(x_1+x_2)^2\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} m\geq -2\\ 4x_1x_2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\geq -2\\ 4(m^2-9)=0\end{matrix}\right.\Rightarrow m=3\) (thỏa mãn)

Vậy.........

5 tháng 2 2020

a) Tam thức bậc hai có \(\Delta'=m^2-m+4=m^2-2.\frac{1}{2}m+\frac{1}{4}-\frac{1}{4}+4=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\).

Suy ra phương trình (1) luôn có nghiệm với mọi m.

b) Theo Vi-et ta có:

\(x_1+x_2=2m,x_1.x_2=m-4\)

Điều kiển để \(x_1+x_2=\frac{x_1^2}{x_2}+\frac{x_2^2}{x_1}\)

   \(\Leftrightarrow x_1+x_2=\frac{x_1^3+x_2^3}{x_1x_2}\)

    \(\Leftrightarrow x_1+x_2=\frac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{x_1x_2}\)

   \(\Leftrightarrow2m=\frac{\left(2m\right)^3-3\left(m-4\right).2m}{m-4}\)

  \(\Leftrightarrow2m\left(m-4\right)=8m^3-6m^2+8m\) và \(m\ne4\)

  \(\Leftrightarrow4m\left(2m^2-2m+3\right)=0\) và \(m\ne4\)

  \(\Leftrightarrow m=0\)

Theo Vi-et ta có \(\hept{\begin{cases}x_1+x_2=\frac{m+3}{2}&x_1.x_2=\frac{m}{2}&\end{cases}}\)

ĐĂT \(A=!x_1-x_2!\)

\(\Rightarrow A^2=\left(!x_1-x_2!\right)=\left(x_1+x_2\right)^2-4x_1x_2\)

\(\Leftrightarrow A^2=\frac{\left(m+3\right)^2}{2^2}-\frac{4m}{2}\)

\(\Leftrightarrow4A^2=m^2-8m+16-16-9\)

\(\Leftrightarrow4A^2=\left(m-4\right)^2-25\ge25\)

\(Min4A^2=25\Rightarrow MinA=\frac{1}{2}\Leftrightarrow\left(m-4\right)^2=0\Leftrightarrow m=4\) gía trị cần tìm

Vậy m=4 là giá trị cần tìm

\(\Leftrightarrow4A^2=m^2-2m+9\)

\(\Leftrightarrow4A^2=\left(m-1\right)+8\ge8\)

\(Min4A^2=8\Rightarrow MinA=\sqrt{2}\)

\(Khi\left(m-1\right)^2=0\Leftrightarrow m=1\)

Vậy \(m=1\)là giá trị cần tìm