Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\Delta^'=\left(-m\right)^2-\left(-3m^2+4\right)=4m^2-4\)
Để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\Delta^'>0\Leftrightarrow4m^2-4>0\Leftrightarrow\left[{}\begin{matrix}x< -1\\x>1\end{matrix}\right.\)
b) Theo Vi-ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1\cdot x_2=4-3m^2\end{matrix}\right.\)
\(\left|x_1-x_2\right|^2=\left|\right|\left(x_1-x_2\right)^2=x^2_1+x_2^2-2x_1\cdot x_2=\left(x_1+x_2\right)^2-4x_1\cdot x_2=4m^2-4+3m^2=7m^2-4\ge4\Rightarrow\left|x_1-x_2\right|\ge2\)
Dấu bằng xảy ra \(\Leftrightarrow m=0\)
1.Ta có \(\Delta=4m^2-4\left(m^2-m-3\right)=4m+12\)
Để phương trình có 2 nghiệm phân biệt \(\Rightarrow\Delta>0\Rightarrow4m+12>0\Rightarrow m>-3\)
Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m-3\end{cases}}\)
a. Phương trình có 2 nghiệm trái dấu \(\Rightarrow x_1.x_2< 0\Rightarrow m^2-m-3< 0\Rightarrow\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)
Vậy \(\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)
b. Phương trình có 2 nghiệm phân biệt dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2m>0\\x_1.x_2=m^2-m-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}m>0\\m< \frac{1-\sqrt{13}}{2}\end{cases}\left(l\right);\hept{\begin{cases}m>0\\m>\frac{1+\sqrt{13}}{2}\end{cases}\Leftrightarrow m>\frac{1+\sqrt{13}}{2}}}}\)
Vậy \(m>\frac{1+\sqrt{13}}{2}\)
2. a.Ta có \(\Delta=\left(2m-1\right)^2+4m=4m^2-4m+1+4m=4m^2+1\)
Ta thấy \(\Delta=4m^2+1>0\forall m\)
Vậy phương trình luôn có 2 nghiejm phân biệt với mọi m
b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1.x_2=-m\end{cases}}\)
Để \(x_1-x_2=1\Leftrightarrow\left(x_1-x_2\right)^2=1\Leftrightarrow\left(x_1+x2\right)^2-4x_1x_2=1\)
\(\Leftrightarrow\left(1-2m\right)^2-4.\left(-m\right)=1\Leftrightarrow4m^2-4m+1+4m=1\)
\(\Leftrightarrow m^2=0\Leftrightarrow m=0\)
Vậy \(m=0\)thoă mãn yêu cầu bài toán
Ta có:
\(\Delta=\left(m+2\right)^2-4\left(m-1\right)=m^2+4m+4-4m+4=m^2+8>0\left(\forall m\right)\)
=> PT luôn có 2 nghiệm phân biệt với mọi GT của m
Theo hệ thức viet ta có: \(\hept{\begin{cases}x_1+x_2=-m-2\\x_1x_2=m-1\end{cases}}\)
Thay vào A ta được:
\(A=x_1^2+x_2^2-3x_1x_2\)
\(A=\left(x_1+x_2\right)^2-5x_1x_2\)
\(A=\left(-m-2\right)^2-5\left(m-1\right)\)
\(A=m^2+4m+4-5m+5=m^2-m+9\)
\(A=\left(m^2-m+\frac{1}{4}\right)+\frac{35}{4}\)
\(A=\left(m-\frac{1}{2}\right)^2+\frac{35}{4}\ge\frac{35}{4}\left(\forall m\right)\)
Dấu "=" xảy ra khi: \(m=\frac{1}{2}\)
Vậy \(Min_A=\frac{35}{4}\Leftrightarrow m=\frac{1}{2}\)
Δ = b2 - 4ac = ( m + 2 )2 - 4( m - 1 ) = m2 + 4m + 4 - 4m + 4 = m2 + 8 ≥ 8 > 0 ∀ m
hay phương trình luôn có hai nghiệm phân biệt với mọi m
Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-m-2\\x_1x_2=\frac{c}{a}=m-1\end{cases}}\)
Khi đó : A = x12 + x22 - 3x1x2 = ( x1 + x2 )2 - 5x1x2
= ( -m - 2 )2 - 5( m - 1 ) = m2 + 4m + 4 - 5m + 5
= m2 - m + 9 = ( m - 1/2 )2 + 35/4 ≥ 35/4 ∀ m
Dấu "=" xảy ra <=> m = 1/2. Vậy MinA = 35/4
a: Khim=0 thì (1) trở thành \(x^2-2=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
Khi m=1 thì (1) trở thành \(x^2-2x=0\)
=>x=0 hoặc x=2
b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)
\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm
a) Có: `\Delta'=(m-2)^2-(m^2-4m)=m^2-4m+4-m^2+4m=4>0 forall m`
`=>` PT luôn có 2 nghiệm phân biệt với mọi `m`.
b) Viet: `x_1+x_2=-2m+4`
`x_1x_2=m^2-4m`
`3/(x_1) + x_2=3/(x_2)+x_1`
`<=> 3x_2+x_1x_2^2=3x_1+x_1^2 x_2`
`<=> 3(x_1-x_2)+x_1x_2(x_1-x_2)=0`
`<=>(x_1-x_2).(3+x_1x_2)=0`
`<=> \sqrt((x_1+x_2)^2-4x_1x_2) .(3+x_1x_2)=0`
`<=> \sqrt((-2m+4)^2-4(m^2-4m)) .(3+m^2-4m)=0`
`<=> 4.(3+m^2-4m)=0`
`<=> m^2-4m+3=0`
`<=>` \(\left[{}\begin{matrix}m=3\\m=1\end{matrix}\right.\)
Vậy `m \in {1;3}`.
Bài 2:
a: \(a=1;b=-2\left(m-2\right);c=-8\)
Vì ac<0 nên phương trình luôn có hai nghiệm trái dấu với mọi m
b: Theo Vi-et, ta được: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)=2m-4\\x_1x_2=-8\end{matrix}\right.\)
Ta có: \(x_1^3+x_2^3-4x_1-4x_2=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-4\left(x_1+x_2\right)=0\)
\(\Leftrightarrow\left(2m-4\right)^3-3\cdot\left(2m-4\right)\cdot\left(-8\right)-4\cdot\left(2m-4\right)=0\)
\(\Leftrightarrow\left(2m-4\right)\left[4m^2-16m+16+24-4\right]=0\)
\(\Leftrightarrow\left(2m-4\right)\left(4m^2-16m+36\right)=0\)
\(\Leftrightarrow2m-4=0\)
hay m=2
a, \(\Delta'=m^2-\left(m^2-4\right)=4>0\)
Vậy pt luôn có 2 nghiệm pb x1;x2
Theo Vi et \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m^2-4\end{cases}}\)
Ta có : \(2x_1-3x_2=-1\left(3\right)\)Từ (1) ;(3) ta có hệ
\(\hept{\begin{cases}2x_1+2x_2=4m\\2x_1-3x_2=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}5x_2=4m+1\\x_1=2m-x_2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_2=\frac{4m+1}{5}\\x_1=\frac{10-4m-1}{5}=\frac{-4m+9}{5}\end{cases}}\)
Thay vào (2) ta được \(\frac{\left(4m+1\right)\left(-4m+9\right)}{25}=m^2-4\)
\(\Rightarrow-16m^2+36m-4m+9=25\left(m^2-4\right)\)
\(\Leftrightarrow41m^2-32m-109=0\)
bạn tự tính = delta' nhé, có gì sai bảo mình do số khá to và phức tạp á
b, Ta có \(\left|x_1\right|=\left|x_2\right|\)suy ra
\(\left|\frac{4m+1}{5}\right|=\left|\frac{9-4m}{5}\right|\Rightarrow\left|4m+1\right|=\left|9-4m\right|\)
TH1 : \(4m+1=9-4m\Leftrightarrow8m=8\Leftrightarrow m=1\)
TH2 : \(4m+1=4m-9\left(voli\right)\)
Bạn ơi cái chỗ (4m-2)^2+4 ấy làm sao để ra ạ
bạn có thể ns rõ chổ nào ko ạ ! có nhiều chổ như thế lắm !
VD : \(16m^2-16m+4+4=\left(4m\right)^2-2.4m.2+2^2+2=\left(4m-2\right)^2+4\)
Hay \(\left(4m-2\right)^2+4\ge0+4=4\)