Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Bạn thế vào nhé
b.\(\Delta=3^2-4m=9-4m\)
Để pt vô nghiệm thì \(\Delta< 0\)
\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)
c.Ta có: \(x_1=-1\)
\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)
d.Theo hệ thức Vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)
1/ \(x_1^2+x_2^2=34\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)
\(\Leftrightarrow\left(-3\right)^2-2m=34\)
\(\Leftrightarrow m=-12,5\)
..... ( Các bài kia tương tự bạn nhé )
a: Khi x=3 thì pt sẽ là:
3^2-2*3+m+3=0
=>m-6+9+3=0
=>m+6=0
=>m=-6
x1+x2=2
=>x2=2-3=-1
b:
Δ=(-2)^2-4(m+3)
=4-4m-12
=-4m-8
Để phương trình có hai nghiệm phân biệt thì:
-4m-8>=0
=>m<=-2
x1^3+x2^3=8
=>(x1+x2)^3-3x1x2(x1+x2)=8
=>2^3-3*2(m+3)=8
=>6(m+3)=0
=>m+3=0
=>m=-3(nhận)
a) Thay x=-1 vào pt có:5+m=0 <=> m=-5
Thay m=-5 vào pt có:\(x^2-4x-5=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
Vậy nghiệm còn lại là 5
b) Để pt có hai nghiệm <=> \(\Delta\ge\) <=>\(16-4m\ge0\) <=>\(m\le4\)
Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m\end{matrix}\right.\)
Có \(\left(3x_1+1\right)\left(3x_2+1\right)=4\)
\(\Leftrightarrow9x_1x_2+3\left(x_1+x_1\right)+1=4\)
\(\Leftrightarrow9m+3.4+1=4\)
\(\Leftrightarrow m=-1\) (thỏa)
Vậy m=-1
a) `x=-1` là nghiệm `=> (-1)^2-4.(-1)+m=0 <=> m=-5`
`=>` PT: `x^2-4x-5=0 =>` Nghiệm còn lại là: `x=5`
b) PT có 2 nghiệm phân biệt `<=> \Delta'>0 <=> 2^2-m>0 <=> m < 4`
Viet: `x_1+x_2=4`
`x_1x_2=m`
Theo đề: `(3x_1+1)(3x_2+1)=4`
`<=> 3x_1x_2+3(x_1+x_2)+1=4`
`<=> 3m+3.4+1=4`
`<=> m=-9`
Vậy `m=-9`.
a: Khi m=1/2 thì \(x^2-2x-\dfrac{1}{4}-4=0\)
\(\Leftrightarrow x^2-2x-\dfrac{17}{4}=0\)
\(\Leftrightarrow4x^2-8x-17=0\)
\(\Leftrightarrow\left(2x-2\right)^2=21\)
hay \(x\in\left\{\dfrac{\sqrt{21}+2}{2};\dfrac{-\sqrt{21}+2}{2}\right\}\)
b: \(\text{Δ}=\left(-2\right)^2-4\left(-m^2-4\right)\)
\(=4+4m^2+16=4m^2+20>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt