K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2022

a.Bạn thế vào nhé

b.\(\Delta=3^2-4m=9-4m\)

Để pt vô nghiệm thì \(\Delta< 0\)

\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)

c.Ta có: \(x_1=-1\)

\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)

d.Theo hệ thức Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)

1/ \(x_1^2+x_2^2=34\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)

\(\Leftrightarrow\left(-3\right)^2-2m=34\)

\(\Leftrightarrow m=-12,5\)

..... ( Các bài kia tương tự bạn nhé )

a: Khi x=3 thì pt sẽ là:

3^2-2*3+m+3=0

=>m-6+9+3=0

=>m+6=0

=>m=-6

x1+x2=2

=>x2=2-3=-1

b:

Δ=(-2)^2-4(m+3)

=4-4m-12

=-4m-8

Để phương trình có hai nghiệm phân biệt thì:

-4m-8>=0

=>m<=-2

x1^3+x2^3=8

=>(x1+x2)^3-3x1x2(x1+x2)=8

=>2^3-3*2(m+3)=8

=>6(m+3)=0

=>m+3=0

=>m=-3(nhận)

27 tháng 5 2021

a) Thay x=-1 vào pt có:5+m=0 <=> m=-5

Thay m=-5 vào pt có:\(x^2-4x-5=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

Vậy nghiệm còn lại là 5

b) Để pt có hai nghiệm <=> \(\Delta\ge\) <=>\(16-4m\ge0\) <=>\(m\le4\)

Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m\end{matrix}\right.\)

Có \(\left(3x_1+1\right)\left(3x_2+1\right)=4\)

\(\Leftrightarrow9x_1x_2+3\left(x_1+x_1\right)+1=4\)

\(\Leftrightarrow9m+3.4+1=4\)

\(\Leftrightarrow m=-1\) (thỏa)

Vậy m=-1

27 tháng 5 2021

a) `x=-1` là nghiệm `=> (-1)^2-4.(-1)+m=0 <=> m=-5`

`=>` PT: `x^2-4x-5=0 =>` Nghiệm còn lại là: `x=5`

b) PT có 2 nghiệm phân biệt `<=> \Delta'>0 <=> 2^2-m>0 <=> m < 4`

Viet: `x_1+x_2=4`

`x_1x_2=m`

Theo đề: `(3x_1+1)(3x_2+1)=4`

`<=> 3x_1x_2+3(x_1+x_2)+1=4`

`<=> 3m+3.4+1=4`

`<=> m=-9`

Vậy `m=-9`.

a: Khi m=1/2 thì \(x^2-2x-\dfrac{1}{4}-4=0\)

\(\Leftrightarrow x^2-2x-\dfrac{17}{4}=0\)

\(\Leftrightarrow4x^2-8x-17=0\)

\(\Leftrightarrow\left(2x-2\right)^2=21\)

hay \(x\in\left\{\dfrac{\sqrt{21}+2}{2};\dfrac{-\sqrt{21}+2}{2}\right\}\)

b: \(\text{Δ}=\left(-2\right)^2-4\left(-m^2-4\right)\)

\(=4+4m^2+16=4m^2+20>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt