Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta=4\left(m-1\right)^2-4.\left(-3\right)=4\left(m-1\right)^2+12>0\forall m\)
=>Pt luôn có hai nghiệm pb
Theo viet:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1.x_2=-3\ne0\forall m\end{matrix}\right.\)
Có \(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\)
\(\Leftrightarrow x_1^3+x_2^3=\left(m-1\right)x_1^2.x_2^2\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=\left(m-1\right).\left(-3\right)^2\)
\(\Leftrightarrow8\left(m-1\right)^3-3\left(-3\right).2\left(m-1\right)=9\left(m-1\right)\)
\(\Leftrightarrow8\left(m-1\right)^3+9\left(m-1\right)=0\)
\(\Leftrightarrow\left(m-1\right)\left[8\left(m-1\right)^2+9\right]=0\)
\(\Leftrightarrow m=1\)(do \(8\left(m-1\right)^2+9>0\) với mọi m)
Vậy m=1
Vì \(ac< 0\) \(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-3\end{matrix}\right.\)
Mặt khác: \(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\) \(\Rightarrow\dfrac{\left(x_1+x_2\right)\left(x_1^2+x_2^2-x_1x_2\right)}{x_1^2x_2^2}=m-1\)
\(\Leftrightarrow\dfrac{\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]}{x_1^2x_2^2}=m-1\)
\(\Rightarrow\dfrac{\left(2m-2\right)\left(4m^2-8m+13\right)}{9}=m-1\)
\(\Leftrightarrow...\)
\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0\) ; \(\forall m\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=2m-3\end{matrix}\right.\)
Ta có: \(P=\left|\dfrac{x_1+x_2}{x_1-x_2}\right|\ge0\)
\(\Rightarrow P_{min}=0\) khi \(x_1+x_2=0\Leftrightarrow m=-1\)
Đề là yêu cầu tìm max hay min nhỉ? Min thế này thì có vẻ là quá dễ
\(\text{Δ}=\left(-4n\right)^2-4\left(12n-9\right)\)
\(=16n^2-48n+36\)
\(=\left(4n-6\right)^2\)>=0
=>Phương trình luôn có hai nghiệm
Theo đề, ta có: \(2x_1x_2+3\left(x_1+x_2\right)-54=0\)
\(\Leftrightarrow2\left(12n-9\right)+3\cdot4n-54=0\)
=>24n-18+12n-54=0
=>36n-72=0
hay n=2
\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)
nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\).
Theo định lí Viete:
\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)
\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)
\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)
Dấu \(=\)xảy ra khi \(m=-1\).
1. Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{4}{3}\\x_1.x_2=\dfrac{1}{3}\end{matrix}\right.\)
\(C=\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_1-1\right)\left(x_2-1\right)}\)
\(=\dfrac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_1-x_2+1}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{\left(-\dfrac{4}{3}\right)^2-2.\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)}{\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)+1}=\dfrac{\dfrac{22}{9}}{\dfrac{8}{3}}=\dfrac{11}{12}\)
\(1,3x^2+4x+1=0\)
Do pt có 2 nghiệm \(x_1,x_2\) nên theo đ/l Vi-ét ta có :
\(\left\{{}\begin{matrix}S=x_1+x_2=\dfrac{-b}{a}=-\dfrac{4}{3}\\P=x_1x_2=\dfrac{c}{a}=\dfrac{1}{3}\end{matrix}\right.\)
Ta có :
\(C=\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}\)
\(=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_2-1\right)\left(x_1-1\right)}\)
\(=\dfrac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_2-x_1+1}\)
\(=\dfrac{\left(x_1^2+x_2^2\right)-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{S^2-2P-S}{P-S+1}\)
\(=\dfrac{\left(-\dfrac{4}{3}\right)^2-2.\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)}{\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)+1}\)
\(=\dfrac{11}{12}\)
Vậy \(C=\dfrac{11}{12}\)
1.
\(a+b+c=0\) nên pt luôn có 2 nghiệm
\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)
\(A=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2x_1x_2+2}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)
\(A=\dfrac{m^2+2-\left(m^2-2m+1\right)}{m^2+2}=1-\dfrac{\left(m-1\right)^2}{m^2+2}\le1\)
Dấu "=" xảy ra khi \(m=1\)
2.
\(\Delta=m^2-4\left(m-2\right)=\left(m-2\right)^2+4>0;\forall m\) nên pt luôn có 2 nghiệm pb
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)
\(\dfrac{\left(x_1^2-2\right)\left(x_2^2-2\right)}{\left(x_1-1\right)\left(x_2-1\right)}=4\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1^2+x_2^2\right)+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)
\(\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1+x_2\right)^2+4x_1x_2+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)
\(\Rightarrow\dfrac{\left(m-2\right)^2-2m^2+4\left(m-2\right)+4}{m-2-m+1}=4\)
\(\Rightarrow-m^2=-4\Rightarrow m=\pm2\)
Để pt 1 có 2 nghiệm phân biệt =>\(\Delta\)>0
<=> (2m-1(2 - 4(m2-3m-4( >0
<=> 4m2 - 4m + 1 - 4m2+12m+16 > 0
<=>8m +17>0
<=> m>-17/8
=> theo hệ thức Vi ét ta có
x1+x2=-2m+1 *
x1.x2=m2-3m-4 *
Theo bài ra ta có pt
|x1−x2|−2=0
<=> |x1−x2|=2
<=> (x1-x2(2=22
<=> x12 - 2x1.x2 + x22 = 4
<=> (x1 + x2 > 2- 4 x1x2 = 4 <**>
Thay *,* vào <**> ta được :
(-<2m-1>>2 - 4<m2-3m-4> = 4
<=> 4m2-4m+1 - 4m2+12m+16=4
<=> 8m + 17= 4
<=> 8m = 13
<=> m= 13/8 < t/m >
Vậy m = 13/8 là giá trị cần tìm
Lời giải:
Để pt có 2 nghiệm pb thì:
$\Delta'=(2m-1)^2-4(m^2-3m-4)=8m+17>0\Leftrightarrow m> \frac{-17}{8}$
Áp dụng định lý Viet:
$x_1+x_2=1-2m$
$x_1x_2=m^2-3m-4$
Khi đó:
$|x_1-x_2|-2=0$
$\Leftrightarrow |x_1-x_2|=2$
$\Leftrightarrow (x_1-x_2)^2=4$
$\Leftrightarrow (x_1+x_2)^2-4x_1x_2=4$
$\Leftrightarrow (1-2m)^2-4(m^2-3m-4)=4$
$\Leftrightarrow 8m+17=4$
$\Leftrightarrow m=\frac{-13}{8}$ (tm)
Ta có: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(m+1\right)\)
\(=\left(-2m+2\right)^2-4\left(m+1\right)\)
\(=4m^2-8m+4-4m-4\)
\(=4m^2-12m\)
Để phương trình có nghiệm thì \(\text{Δ}\ge0\)
\(\Leftrightarrow4m^2-12m\ge0\)
\(\Leftrightarrow4m\left(m-3\right)\ge0\)
\(\Leftrightarrow m\left(m-3\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}m\ge3\\m\le0\end{matrix}\right.\)
Khi \(\left[{}\begin{matrix}m\ge3\\m\le0\end{matrix}\right.\), Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1\cdot x_2=m+1\end{matrix}\right.\)
Ta có: \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=4\)
\(\Leftrightarrow\dfrac{x_1^2+x_2^2}{x_1\cdot x_2}=4\)
\(\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=4\)
\(\Leftrightarrow\dfrac{\left(2m-2\right)^2-2\cdot\left(m+1\right)}{m+1}=4\)
\(\Leftrightarrow4m^2-8m+4-2m-2=4\left(m+1\right)\)
\(\Leftrightarrow4m^2-10m+2-4m-4=0\)
\(\Leftrightarrow4m^2-14m-2=0\)
Đến đây bạn tự làm nhé, chỉ cần tìm m và đối chiều với điều kiện thôi
Pt có 2 nghiệm
\(\to \Delta=[-2(m-1)]^2-4.1.(m+1)=4m^2-8m+4-4m-4=4m^2-12m\ge 0\)
\(\leftrightarrow m^2-3m\ge 0\)
\(\leftrightarrow m(m-3)\ge 0\)
\(\leftrightarrow \begin{cases}m\ge 0\\m-3\ge 0\end{cases}\quad or\quad \begin{cases}m\le 0\\m-3\le 0\end{cases}\)
\(\leftrightarrow m\ge 3\quad or\quad m\le 0\)
Theo Viét
\(\begin{cases}x_1+x_2=2(m-1)\\x_1x_2=m+1\end{cases}\)
\(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=4\)
\(\leftrightarrow \dfrac{x_1^2+x_2^2}{x_1x_2}=4\)
\(\leftrightarrow \dfrac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=4\)
\(\leftrightarrow \dfrac{[2(m-1)]^2-2.(m+1)}{m+1}=4\)
\(\leftrightarrow 4m^2-8m+4-2m-2=4(m+1)\)
\(\leftrightarrow 4m^2-10m+2-4m-4=0\)
\(\leftrightarrow 4m^2-14m-2=0\)
\(\leftrightarrow 2m^2-7m-1=0 (*)\)
\(\Delta_{*}=(-7)^2-4.2.(-1)=49+8=57>0\)
\(\to\) Pt (*) có 2 nghiệm phân biệt
\(m_1=\dfrac{7+\sqrt{57}}{2}(TM)\)
\(m_2=\dfrac{7-\sqrt{57}}{2}(TM)\)
Vậy \(m=\dfrac{7\pm \sqrt{57}}{2}\) thỏa mãn hệ thức
Có\(\Delta=4\left(m+1\right)^2-4\left(2m-3\right)=4m^2+16>0\forall m\)
=> pt luôn có hai nghiệm pb
Theo viet có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m-3\end{matrix}\right.\)
Có :\(P^2=\left(\dfrac{x_1+x_2}{x_1-x_2}\right)^2=\dfrac{4\left(m+1\right)^2}{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(=\dfrac{4\left(m+1\right)^2}{4\left(m+1\right)^2-4\left(2m-3\right)}=\dfrac{4\left(m+1\right)^2}{4m^2+16}\)\(\ge0\)
\(\Rightarrow P\ge0\)
Dấu = xảy ra khi m=-1