Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b Có ∆’ = (m + 1)2 – m2 = 2m + 1
Để pt có 2 nghiệm phân biệt thì 2m + 1 > 0 ⇔ m > -
Vì x = -2 là nghiệm của pt nên ta có 4 – 4(m + 1) + m2 = 0
⇔ m2 – 4m = 0 ⇔ m = 0 ; m = 4
Vậy với m = 0 ; m = 4 thì pt có 2 nghiệm phân biệt, trong đó có 1 nghiêm = -2
a) \(\Delta'=\left(m+1\right)^2-\left(m^2-3m\right)=5m+1\)
Để phương trình có nghiệm duy nhất thì \(\Delta'=0\Leftrightarrow5m+1=0\Leftrightarrow m=-\frac{1}{5}.\)
b) Phương trình có 2 nghiệm phân biệt thì \(5m+1>0\Leftrightarrow m>-\frac{1}{5}.\)
Theo hệ thức Viet ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1.x_2=m^2-3m\end{cases}}\)
Ta có: \(\left(x_1-2\right)\left(x_2-2\right)=x_1^2+x_2^2\Leftrightarrow x_1x_2-2\left(x_1+x_2\right)+4=\left(x_1+x_2\right)^2-2x_1x_2\)
\(\Leftrightarrow m^2-3m-4\left(m+1\right)+4=4\left(m+1\right)^2-2m^2+6m\)
\(\Leftrightarrow m^2-7m=2m^2+14m+4\)
\(\Leftrightarrow m^2+21m+4=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=\frac{-21+\sqrt{17}}{2}\left(tm\right)\\m=\frac{-21-\sqrt{17}}{2}\left(l\right)\end{cases}}\)
Vậy \(m=\frac{-21+\sqrt{17}}{2}\)
a/ \(m=4\to x^2-8x+7=0\\\leftrightarrow x^2-7x-x+7=0\\\leftrightarrow x(x-7)-(x-7)=0\\\leftrightarrow (x-1)(x-7)=0\\\leftrightarrow x-1=0\quad or\quad x-7=0\\\leftrightarrow x=1\quad or\quad x=7\)
b/ Pt có 2 nghiệm phân biệt
\(\to \Delta=(-2m)^2-4.1.(2m-1)=4m^2-8m+4=4(m^2-2m+1)=4(m-1)^2\ge 0\)
\(\to m\in \mathbb R\)
c/ Theo Viét
\(\begin{cases}x_1+x_2=2m\\x_1x_2=2m-1\end{cases}\)
Tổng bình phương các nghiệm là 10
\(\to x_1^2+x_2^2\\=(x_1+x_2)^2-2x_1x_2=(2m)^2-2.(2m-1)=4m^2-4m+2\)
\(\to 4m^2-4m+2=10\)
\(\leftrightarrow 4m^2-4m-8=0\)
\(\leftrightarrow m^2-m-2=0\)
\(\leftrightarrow m^2-2m+m-2=0\)
\(\leftrightarrow m(m-2)+(m-2)=0\)
\(\leftrightarrow (m+1)(m-2)=0\)
\(\leftrightarrow m+1=0\quad or\quad m-2=0\)
\(\leftrightarrow m=-1(TM)\quad or\quad m=2(TM)\)
Vậy \(m\in\{-1;2\}\)
\(x^2-2\left(m+2\right)x+m^2+3m-2=0\)
\(\left(a=1;b'=-\left(m+2\right);c=m^2+3m-2\right)\)
\(\Delta'=b'^2-ac\)
\(=\left[-\left(m+2\right)\right]^2-1.\left(m^2+3m-2\right)\)
\(=m^2+4m+4-m^2-3m+2\)
\(=m+6>0,\forall m\)
Vì \(\Delta'>0\) với mọi m , nên áp dụng hệ thức vi - ét :
\(x_1+x_2=-\frac{b}{a}=2m+4\)
\(x_1.x_2=\frac{c}{a}=m^2+3m-2\)
Theo đề bài ta có :
\(A=2018+3x_1x_2-x_1^2-x_2^2\)
\(A=2018+3x_1x_2-\left(x_1^2+x_2^2\right)\)
\(A=2018+3.x_1x_2-\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\)
\(A=2018+3.\left(m^2+3m-2\right)-\left[\left(2m+4\right)^2-2.\left(m^2+3m-2\right)\right]\)
\(A=2018+3m^2+9m-6-\left[\left(4m^2+16m+16\right)-2m^2-6m+4\right]\)
\(A=2018+3m^2+9m-6-4m^2-16m-16+2m^2+6m-4\)
\(A=m^2-m+1992\)
Đến đây thì bạn tự làm nha
a, \(\Delta'=1-\left(2m-5\right)=6-2m\)
để pt có nghiệm kép \(6-2m=0\Leftrightarrow m=3\)
b, để pt có 2 nghiệm pb \(6-2m>0\Leftrightarrow m< 3\)
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=2m-5\end{matrix}\right.\)
Ta có \(\left(x_1+x_2\right)^2-7x_1x_2=0\)
\(4-7\left(2m-5\right)=0\Leftrightarrow2m-5=\dfrac{4}{7}\Leftrightarrow m=\dfrac{39}{14}\)(tm)
a) Xét pt \(x^2-2x+2m-5=0\), có \(\Delta'=\left(-1\right)^2-\left(2m-5\right)=1-2m+5=6-2m\)
Để pt có nghiệm kép thì \(\Delta'=0\)hay \(6-2m=0\)\(\Leftrightarrow m=3\)
b) Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\)hay \(6-2m>0\)\(\Leftrightarrow m< 3\)
Khi đó, ta có \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-5\end{cases}}\)(hệ thức Vi-ét)
Từ đó \(x_1^2+x_2^2=5x_1x_2\)\(\Leftrightarrow\left(x_1+x_2\right)^2=7x_1x_2\)\(\Leftrightarrow2^2=7\left(2m-5\right)\)\(\Leftrightarrow4=14m-35\)\(\Leftrightarrow14m=39\)\(\Leftrightarrow m=\frac{39}{14}\)(nhận)
Vậy để [...] thì \(m=\frac{39}{14}\)
PT có 2 nghiệm phân biệt
`<=>Delta'>0`
`<=>(m-1)^2-(m+1)>0`
`<=>m^2-2m+1-m-1>0`
`<=>m^2--3m>0`
`<=>m(m-3)>0`
`<=>` $\left[ \begin{array}{l}\begin{cases}m>0\\m-3>0\\\end{cases}\\\begin{cases}m<0\\m-3<0\\\end{cases}\end{array} \right.$
`<=>` $\left[ \begin{array}{l}\begin{cases}m>0\\m>3\\\end{cases}\\\begin{cases}m<0\\m<3\\\end{cases}\end{array} \right.$
`<=>` $\left[ \begin{array}{l}m>3\\m<0\end{array} \right.$
Vậy m>3 or m<0 thì PT có 2 nghiệm phân biệt