K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

1) thay m = -2 vào pt \(\Leftrightarrow\) \(x^2-2\left(-2-1\right)x-2-3=0\)

\(\Leftrightarrow\) \(x^2+6x-5=0\)

\(\Delta\)' = \(\left(3\right)^2-1\left(-5\right)\) = \(9+5=14\) > 0

\(\Rightarrow\) phương trình có 2 nghiệm phân biệt

\(x_1=-3+\sqrt{14}\)

\(x_2=-3-\sqrt{14}\)

2) \(\Delta\)' = \(\left(m-1\right)^2-\left(m-3\right)=m^2-2m+1-m+3\)

= \(m^2-3m+4\) = \(m^2-2.\dfrac{3}{2}.m+\left(\dfrac{3}{2}\right)^2-\dfrac{9}{4}+4\)

= \(\left(m-\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}>0\forall m\)

\(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt \(\forall m\) (đpcm)

3) phương trình có 2 nghiệm trái dấu \(\Leftrightarrow\) \(p< 0\) \(\Leftrightarrow\) \(x_1x_2< 0\)

\(\Leftrightarrow\) \(m-3< 0\) \(\Leftrightarrow\) \(m< 3\) vậy \(m< 3\) thì phương trình có 2 nghiệm phân biệt trái dấu

4 tháng 8 2017

1.Ta có \(\Delta=4m^2-4\left(m^2-m-3\right)=4m+12\)

Để phương trình có 2 nghiệm phân biệt \(\Rightarrow\Delta>0\Rightarrow4m+12>0\Rightarrow m>-3\)

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m-3\end{cases}}\)

a. Phương trình có 2 nghiệm trái dấu \(\Rightarrow x_1.x_2< 0\Rightarrow m^2-m-3< 0\Rightarrow\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

Vậy \(\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

b. Phương trình có 2 nghiệm phân biệt dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2m>0\\x_1.x_2=m^2-m-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}m>0\\m< \frac{1-\sqrt{13}}{2}\end{cases}\left(l\right);\hept{\begin{cases}m>0\\m>\frac{1+\sqrt{13}}{2}\end{cases}\Leftrightarrow m>\frac{1+\sqrt{13}}{2}}}}\)

Vậy \(m>\frac{1+\sqrt{13}}{2}\)

2. a.Ta có \(\Delta=\left(2m-1\right)^2+4m=4m^2-4m+1+4m=4m^2+1\)

Ta thấy \(\Delta=4m^2+1>0\forall m\)

Vậy phương trình luôn có 2 nghiejm phân biệt với mọi m

b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1.x_2=-m\end{cases}}\)

Để \(x_1-x_2=1\Leftrightarrow\left(x_1-x_2\right)^2=1\Leftrightarrow\left(x_1+x2\right)^2-4x_1x_2=1\)

\(\Leftrightarrow\left(1-2m\right)^2-4.\left(-m\right)=1\Leftrightarrow4m^2-4m+1+4m=1\)

\(\Leftrightarrow m^2=0\Leftrightarrow m=0\)

Vậy \(m=0\)thoă mãn yêu cầu bài toán 

  

21 tháng 8 2016

Giải hộ e bài này vs ạ mọi ng

30 tháng 5 2023

a) m = 1, phương trình tương đương:

x² + 4x = 0

⇔ x(x + 4) = 0

⇔ x = 0 hoặc x + 4 = 0

*) x + 4 = 0

⇔ x = -4

Vậy S = {-4; 0}

b) ∆' = [-(m - 3)]² - (m² - 1)

= m² - 6m + 9 - m² + 1

= -6m + 10

Phương trình có hai nghiệm phân biệt khi ∆' > 0

⇔ -6m + 10 > 0

⇔ -6m > -10

⇔ m < 5/3

Vậy m < 5/3 thì phương trình đã cho có hai nghiệm phân biệt

30 tháng 5 2023

bạn ơi sao tính ra đc x2+4x=0 vậy bạn 

 

a: \(\text{Δ}=\left(2m-1\right)^2-4\left(m-1\right)\)

\(=4m^2-4m+1-4m+4=4m^2-8m+5\)

\(=\left(4m^2-8m+4\right)+5=4\left(m-1\right)^2+5>0\)

=>Phương trình luôn có hai nghiệm phân biệt

b: Để phương trình có hai nghiệm trái dấu thì m-1<0

hay m<1

21 tháng 5 2018

a) \(x^2+2\left(m-1\right)x-6m-7=0\)\(0\)

\(\left(a=1;b=2\left(m-1\right);b'=m-1;c=-6m-7\right)\)

\(\Delta'=b'^2-ac\)

\(=\left(m-1\right)^2-1.\left(-6m-7\right)\)

\(=m^2-2m+1+6m+7\)

\(=m^2+4m+8\)

\(=m^2+2.m.2+2^2+4\)

\(=\left(m+2\right)^2+4>0,\forall m\)

Vì \(\Delta'>0\) nên phương trình ( 1 ) luôn có 1 nghiệm phân biệt với mọi m