\(x^2-2\left(m+1\right)x+2m=0\)

tìm \(m\) để bt ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2018

Ta có \(\Delta'=\left(m+1\right)^2-2m=m^2+1>0\forall m\)

Vậy phương trình luôn có 2 nghiệm phân biệt. Áp dụng hệ thức Viet ta có : \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1.x_2=2m\end{cases}}\)

Khi đó ta có \(P=3x_1^2+3x_2^2-4x_1-4x_2=3\left(x_1^2+x_2^2\right)-4\left(x_1+x_2\right)\)

 \(=3\left[\left(x_1+x_2\right)^2-2x_1.x_2\right]-4\left(x_1+x_2\right)\)

\(=3\left[4\left(m+1\right)^2-2.2m\right]-4.2.\left(m+1\right)\)

\(=3\left(4m^2+8m+4-4m\right)-8m-8\)

\(=3\left(4m^2+8m+4-4m\right)-8m-8=12m^2+4m+4\)

\(=12\left(m^2+\frac{1}{3}m+\frac{1}{36}\right)+\frac{11}{3}=12\left(m+\frac{1}{6}\right)^2+\frac{11}{3}\ge\frac{11}{3}\forall m\)

Vậy minP = 11/3 khi m = -1/6.

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)a. Tìm m để (1) có 2 nghiệm dương b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyênB2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)a. Tìm m để (1) có 2 nghiệm trái dấub. Tìm m để nghiệm này bằng bình phương nghiệm kiaB3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)a. cmr pt (1) luôn có 2 nghiệm phân...
Đọc tiếp

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)

a. Tìm m để (1) có 2 nghiệm dương 

b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyên

B2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)

a. Tìm m để (1) có 2 nghiệm trái dấu

b. Tìm m để nghiệm này bằng bình phương nghiệm kia

B3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. Tìm m để A=\(x_1^2+x_2^2-3x_1x_2\)đạt GTLN

B4: Cho pt \(x^2+\left(2m+3\right)x+3m+11=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\ne0\)thỏa mãn \(|\frac{1}{x_1}-\frac{1}{x_2}|=\frac{1}{2}\)

B5: cho 2 đường thẳng \(\left(d_1\right):y=\left(m-1\right)x-m^2-m\)và \(\left(d_2\right):y=\left(m-2\right)x-m^2-2m+1\)

a. Xđ tọa độ giao điểm của \(d_1\)và \(d_2\)(điểm G)

b. cmr điểm G thuộc 1 đường thẳng cố định khi m thay đổi

B6: cho pt \(2x^2-4mx+2m^2-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. tìm m để pt (1) có 2 nghiệm thỏa mãn \(2x_1^2+4mx_2+2m^2-1>0\)

B7: cho pt \(x^2-2mx-16+5m^2=0\)(1)

a. tìm m để (1) có nghiệm

b. gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm GTLN và GTNN của biểu thức A=\(x_1\left(5x_1+3x_2-17\right)+x_2\left(5x_2+3x_1-17\right)\)

0
12 tháng 6 2020

Áp dụng hệ thức Vi-ét,ta có : \(\hept{\begin{cases}x_1+x_2=-2\left(m-1\right)\\x_1x_2=4m\end{cases}}\)

Ta có : \(4x_1^2\left(1+x_2\right)+4x_2\left(1+x_1\right)+x_1^2x_2^2=36\)

\(\Rightarrow4\left(x_1^2+x_2^2\right)+4x_1x_2\left(x_1+x_2\right)+x_1^2x_2^2=36\)

\(\Rightarrow4\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+4x_1x_2\left(x_1+x_2\right)+x_1^2x_2^2=36\)

thay vào rồi tìm m thôi 

19 tháng 5 2020

[m=338m=−2

Giải thích các bước giải:

Để phương trình 2x2+(2m−1)x+m−1=02x2+(2m−1)x+m−1=0 có 2 nghiệm phân biệt thì:

⇔Δ>0⇔(2m−1)2−4.2.(m−1)>0⇔4m2−4m+1−8m+8>0⇔4m2−12m+9>0⇔(2m−3)2>0⇔m≠32⇔Δ>0⇔(2m−1)2−4.2.(m−1)>0⇔4m2−4m+1−8m+8>0⇔4m2−12m+9>0⇔(2m−3)2>0⇔m≠32

Theo định lý Vi-et: {x1+x2=1−2m2x1.x2=m−12{x1+x2=1−2m2x1.x2=m−12

Lại có: 3x1−4x2=113x1−4x2=11 (giả thiết)

Ta có hệ: 

{3x1−4x2=11x1+x2=1−2m2⇔{3x1−4x2=114x1+4x2=2(1−2m)⇔{7x1=13−4mx1+x2=1−2m2⇔{x1=13−4m7x2=−1914−3m7{3x1−4x2=11x1+x2=1−2m2⇔{3x1−4x2=114x1+4x2=2(1−2m)⇔{7x1=13−4mx1+x2=1−2m2⇔{x1=13−4m7x2=−1914−3m7

Vì x1x2=m−12x1x2=m−12 nên 13−4m7.(−1914−3m7)=m−1213−4m7.(−1914−3m7)=m−12

[m=338m=−2[m=338m=−2
 

(thỏa mãn điều kiện xác định)

Vậy với m=−2m=−2 và m=338m=338 thì phư

19 tháng 5 2020

Để pt có 2 nghiệm phân biệt \(x_1;x_2\)thì \(\Delta>0\)

\(\Leftrightarrow\left(2m-1\right)^2-4\cdot2\left(m-1\right)>0\)

\(\Rightarrow m\ne15\left(1\right)\)

Mặt khác theo Vi-et và giả thiết ta có:

\(\hept{\begin{cases}x_1+x_2=-\frac{2m-1}{2}\\x_1x_2=\frac{m-1}{2}\end{cases}}\)và \(3x_1-4x_2=11\)

\(\Leftrightarrow\hept{\begin{cases}x_1=\frac{13-4m}{7}\\x_1=\frac{7m-7}{26-8m}\end{cases}}\)và \(3\frac{13-4m}{7}-4\frac{7m-7}{26-8m}=11\)

Giải pt \(3\frac{13-4m}{7}-4\frac{7m-7}{26-8m}=11\)ta được \(\hept{\begin{cases}m=-2\\m=4,125\end{cases}\left(2\right)}\)

ĐK (1) và (2) ta có: Với m=-2 hoặc m=4,125 thì pt có 2 nghiệm phân biệt thỏa mãn 3x1-4x2=11

15 tháng 3 2020

\(\Delta=\left(2m-1\right)^2-4.\left(m-1\right).2=4m^2-4m+1-8m+8=4m^2-12m+9=\left(2m-3\right)^2\ge0\forall m\)

Theo hệ thức viet có:

\(\hept{\begin{cases}x_1+x_2=\frac{1-2m}{2}\\x_1x_2=\frac{m-1}{2}\end{cases}}\)

\(4x_1^2+4x_2^2+2x_1x_2\)\(=4x_1^2+4x_2^2+8x_1x_2-6x_1x_2=4\left(x_1+x_2\right)^2-6x_1x_2=4.\left(\frac{1-2m}{2}\right)^2-6.\frac{m-1}{2}=1\)

\(\Leftrightarrow\left(1-2m\right)^2-3\left(m-1\right)=1\)

Tự làm tiếp nhé

25 tháng 3 2018

\(x^2-2\left(m-1\right)x-3-m=0\)  \(\left(1\right)\)

từ \(\left(1\right)\)  ta có \(\Delta'=\left[-\left(m-1\right)\right]^2-\left(-3-m\right)\)

\(\Delta'=m^2-2m+1+m+3\)

\(\Delta'=m^2-m+4\)

25 tháng 3 2018

Câu b, nx cơ bn ơi !

NV
31 tháng 8 2020

Bạn xem lại đề bài

\(2m^2-2mx....\) có gì đó sai sai

b: \(PT\Leftrightarrow x^2+\left(m-3\right)x-m=0\)

\(\text{Δ}=\left(m-3\right)^2+4m\)

\(=m^2-6m+9+4m\)

\(=m^2-2m+1+8=\left(m-1\right)^2+8>0\)

Do đó: PT luon có hai nghiệm phân biệt

\(\dfrac{2}{x_1}+\dfrac{2}{x_2}=\dfrac{2x_1+2x_2}{x_1x_2}=\dfrac{2\cdot\left(-m+3\right)}{-m}=\dfrac{-2m+6}{-m}\)

\(\dfrac{4x_2}{x_1}+\dfrac{4x_1}{x_2}=\dfrac{4\left(x_1^2+x_2^2\right)}{x_1x_2}\)

\(=\dfrac{4\left(x_1+x_2\right)^2-8x_1x_2}{x_1x_2}=\dfrac{4\left(-m+3\right)^2-8\cdot\left(-m\right)}{-m}\)

\(=\dfrac{4\left(m-3\right)^2+8m}{-m}\)

\(=\dfrac{4m^2-24m+36+8m}{-m}=\dfrac{4m^2-16m+36}{-m}\)

c: \(A=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}+1\)

\(=\sqrt{\left(-m+3\right)^2-4\cdot\left(-m\right)}+1\)

\(=\sqrt{m^2-6m+9+4m}+1\)

\(=\sqrt{m^2-2m+1+8}+1\)

\(=\sqrt{\left(m-1\right)^2+8}+1\ge2\sqrt{2}+1\)

Dấu '=' xảy ra khi m=1

21 tháng 5 2015

\(\Delta=\left(3m+2\right)^2-4.\left(m-4\right)=9m^2+8m+20=\left(3m\right)^2+2.3m.\frac{4}{3}+\frac{16}{9}+\frac{164}{9}=\left(3m+\frac{4}{3}\right)^2+\frac{164}{9}\ge\frac{164}{9}>0\)

=> pt luôn có 2 nghiệm x1; x2

=> \(x^2_1-\left(3m+2\right)x_1+m-4=0\)

Theo hệ thức Vi - ét có: 

\(x_1+x_2=3m+2;x_1.x_2=m-4\)

=> \(x^2_1+x^2_2=\left(x_1+x_2\right)^2-2x_1.x_2=\left(3m+2\right)^2-2.\left(m-4\right)=9m^2+10m+12\)

\(A=2.\left(x^2_1+x_2^2\right)+\left(x^2_1-\left(3m+2\right)x_1+m-4\right)+4m+4\)

=> \(A=2.\left(9m^2+10m+12\right)+4m+4=18m^2+24m+28\)

=> \(A=18m^2+24m+28=2.\left(9m^2+12m+4\right)+20=2.\left(3m+2\right)^2+20\ge20\) với mọi m

=> A nhỏ nhất = 20 khi 3m + 2 = 0 <=> m = -2/3