\(x^2-2\left(m-1\right)x+m^2-3m=0\)

a/ tìm m dể pt có nghiệm bằng 0. Tìm n...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 11 2019

a/ Thay \(x=0\) vào pt ta được:

\(m^2-3m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=3\end{matrix}\right.\)

- Khi \(m=0\Rightarrow x^2+2x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

- Khi \(m=3\Rightarrow x^2-4x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

b/ Theo định lý Viet:

\(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=\frac{x_1+x_2+2}{2}\\x_1x_2=m^2-3m\end{matrix}\right.\)

\(\Rightarrow x_1x_2=\left(\frac{x_1+x_2+2}{2}\right)^2-\frac{3}{2}\left(x_1+x_2+2\right)\)

18 tháng 6 2015

a) pt có 2 nghiệm dương <=> \(\Delta\ge0;\int^{x1+x2>0}_{x1.x2>0}\Leftrightarrow4\left(m+1\right)^2-4\left(m-4\right)\ge0;\int^{2m+2>0}_{m-4>0}\Leftrightarrow4m^2+4m+4+16\ge0;\int^{m>-1}_{m>4}\)

=> m>4. (cái kí hiệu ngoặc kia là kí hiệu và nha. tại trên này không có nên dùng tạm cái ý)

b) áp dụng hệ thức vi ét ta có: x1+x2=2m+2; x1.x2=m-4

 \(M=\frac{\left(x1+x2\right)^2-2x1x2}{x1-x1.x2+x2-x1.x2}=\frac{\left(2m+2\right)^2-2\left(m-4\right)}{2m+2-2\left(m-4\right)}=\frac{4m^2+6m+12}{10}=\frac{\left(4m^2+6m+\frac{9}{4}\right)+\frac{39}{4}}{10}=\frac{\left(2m+\frac{3}{2}\right)^2+\frac{39}{4}}{10}\)

ta có: \(\left(2m+\frac{3}{2}\right)^2\ge0\Leftrightarrow\left(2m+\frac{3}{2}\right)^2+\frac{39}{4}\ge\frac{39}{4}\Leftrightarrow\frac{\left(2m+\frac{3}{2}\right)^2+\frac{39}{4}}{10}\ge\frac{39}{40}\)=> Min M=39/40 <=>m=-3/4

23 tháng 2 2019

\(\left(m+1\right)x^2-2\left(m-1\right)x+m-3=0\) (1)

a) Phương trình (1) có 2 nghiệm phân biệt khi và chỉ khi:

\(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-3\right)>0\)

\(\Leftrightarrow\left(m^2-2m+1\right)-\left(m^2-2m-3\right)>0\) 

\(\Leftrightarrow4>0\)(luôn đúng)

Vậy phương trình có 2 nghiệm phân biệt với mọi m.

b) Để t nghĩ tí

23 tháng 2 2019

ý b kìa ý a mình biết rồi

23 tháng 4 2020

ĐK:\(m\ne1\)

Phương trình có 2 nghiệm \(\Leftrightarrow\)đen-ta\(\ge0.\)

\(\Leftrightarrow4m^2-24m+36-4m^2+4\ge0.\)

\(\Leftrightarrow-24m+40\ge0.\)

\(\Leftrightarrow m\le\frac{5}{3}.\)

Học tốt

23 tháng 4 2020

ý 2 nek: áp dụng hệ thức vi-et ta có: \(\hept{\begin{cases}x_1+x_2=\frac{2m-6}{m-1}\\x_1x_2=\frac{m+1}{m-1}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2-\frac{4}{m-1}\\x_1x_2=1-\frac{2}{m-1}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2-\frac{4}{m-1}\\2x_1x_2=2-\frac{4}{m-1}\end{cases}}\)

x1+x2-2x1x2=0.

vậy x1,x2 độc lập đối với m

học tốt

11 tháng 7 2015

\(A=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2-2=\left[\frac{x_1^2+x^2_2}{x_1x_2}\right]^2-2=\left[\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\right]^2-2\)

\(=\left[\frac{\left(2m-2\right)^2}{2m-5}-2\right]^2-2\)\(=\left(\frac{4m^2-8m+4}{2m-5}-2\right)^2-2=\left(2m-1+\frac{9}{2m-5}\right)^2-2\)

A nguyên khi \(\left(2m-1+\frac{9}{2m-5}\right)^2\in Z\)

\(\Leftrightarrow B=2m-1+\frac{9}{2m-5}=\frac{8m^2-12m+14}{2m-5}\)\(=\sqrt{k}\) với k là một số nguyên dương.

\(\Rightarrow8m^2-12m+14=\sqrt{k}\left(2m-5\right)\)\(\Leftrightarrow8m^2-2\left(6+\sqrt{k}\right)m+14+5\sqrt{k}=0\text{ (1)}\)

(1) có nghiệm m khi \(\Delta'=\left(\sqrt{k}+6\right)^2-8\left(14+5\sqrt{k}\right)\ge0\)

\(\Leftrightarrow k-28\sqrt{k}-76\ge0\Leftrightarrow\sqrt{k}\le14-4\sqrt{17}<0\text{ (loại) hoặc }\sqrt{k}\ge14+4\sqrt{17}\)

\(\Leftrightarrow k\ge\left(14+4\sqrt{17}\right)^2\approx929,78\Rightarrow k\ge930\)

Vậy  \(m=\frac{6+\sqrt{k}+\sqrt{k-28\sqrt{k}-76}}{8}\text{ hoặc }m=\frac{6+\sqrt{k}-\sqrt{k-28\sqrt{k}-76}}{8}\) với k là một số nguyên lớn hợn hoặc bằng 930.

 

13 tháng 7 2017

a. Pt(1) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta=4\left(m-1\right)^2-4.m^2=4\left(m^2-2m+1\right)-4m^2=-8m+4>0\)

\(\Rightarrow m< \frac{1}{2}\)

b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1.x_2=m^2\end{cases}}\)

Từ \(x_1^2+x_2^2-3.x_1.x_2+3=0\Rightarrow\left(x_1+x_2\right)^2-5.x_1.x_2+3=0\)

\(\Rightarrow4\left(m^2-2m+1\right)-5m^2+3=0\Rightarrow-m^2-8m+7=0\)

\(\Rightarrow\orbr{\begin{cases}m=-4-\sqrt{23}\\m=-4+\sqrt{23}\left(l\right)\end{cases}}\)

Vậy \(m=-4-\sqrt{23}\)

4 tháng 4 2016

quá dễ

3 tháng 5 2020

đoạn cuối là m + 1 hay  m + 11 vậy bạn

3 tháng 5 2020

Xét 

\(\Delta'=\left(m-3\right)^2-\left(m-1\right)\left(m+1\right)=m^2-6m+9-m^2-1=-6m+7\ge0\)

\(\Rightarrow m\le\frac{7}{6}\)

Theo Viete ta có:\(x_1+x_2=\frac{2\left(m-3\right)}{m-1}\left(1\right);x_1x_2=\frac{m+1}{m-1}\)

\(\Leftrightarrow x_1x_2\left(m-1\right)=m+1\Leftrightarrow x_1x_2m-m=1+x_1x_2\)

\(\Leftrightarrow m\left(x_1x_2-1\right)=1+x_1x_2\Leftrightarrow m=\frac{1+x_1x_2}{x_1x_2-1}\)

Thay vào ( 1 ) rồi rút gọn là OK nhá,nhác ko muốn tính :))