Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
X2 -5X +m -3 =0 (#)
phtình (#) có 2 nghiệm phân biệt x1x2
denta >0
(-5)2 - 4 . 1 . (m-3) > 0
25 -4m + 12 > 0
37 -4m >0
m<37/4
với m< 37/4 áp dụng định lí vi ét ta có :
- x1 +x2 =5
- x1x2=m-3 => thay x1 + x2 vào (1)/ thay x1x2 vào (1)
Để PT có 2 nghiệm thì:
∆' = (m - 1)2 - (m - 5) > 0
<=> m2 - 3m + 6 > 0
Đúng với mọi m.
Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2m-2\\x_1.x_2=m-5\end{cases}}\)
Theo đề ta có:
(2x1 - 1)(2x2 - 1) = 3
<=> 4x1x2 - 2(x1 + x2) = 2
<=> 4(m - 5) - 2(2m - 2) = 2
<=> 0m = 18
Vậy không tồn tại n thỏa mãn
a. Pt(1) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta=4\left(m-1\right)^2-4.m^2=4\left(m^2-2m+1\right)-4m^2=-8m+4>0\)
\(\Rightarrow m< \frac{1}{2}\)
b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1.x_2=m^2\end{cases}}\)
Từ \(x_1^2+x_2^2-3.x_1.x_2+3=0\Rightarrow\left(x_1+x_2\right)^2-5.x_1.x_2+3=0\)
\(\Rightarrow4\left(m^2-2m+1\right)-5m^2+3=0\Rightarrow-m^2-8m+7=0\)
\(\Rightarrow\orbr{\begin{cases}m=-4-\sqrt{23}\\m=-4+\sqrt{23}\left(l\right)\end{cases}}\)
Vậy \(m=-4-\sqrt{23}\)
có 2 nghiệm phân biệt chi và chỉ khi \(\Delta^,=\left(m-2\right)^2-m^2-2m+3>0\)
\(\Leftrightarrow m^2-4m+4-m^2-2m+3>0\)
\(\Leftrightarrow-6m+7>0\Leftrightarrow m< \frac{7}{6}\)
để phương trình có 2 nghiệm phân biệt thì :
\(\Delta>0< =>a^2-4b-4>0\)
\(< =>a^2>4b+4\)
Ta có : \(\hept{\begin{cases}x_1-x_2=3\\x_1^3+x_2^3=9\end{cases}}\)\(< =>\hept{\begin{cases}\left(x_1-x_2\right)^2=9\\\left(x_1+x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)=9\end{cases}}\)
\(< =>\hept{\begin{cases}\left(x_1+x_2\right)^2-4x_1x_2=9\\\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=9\end{cases}}\)
Theo hệ thức Vi ét : \(\hept{\begin{cases}x_1+x_2=-a\\x_1x_2=b+1\end{cases}}\)
Thay vào ta được hệ phương trình 2 ẩn sau :
\(\hept{\begin{cases}\left(-a\right)^2-4\left(b+1\right)=9\\\left(-a\right)\left[\left(-a\right)^2-3\left(b+1\right)\right]=9\end{cases}}\)
\(< =>\hept{\begin{cases}a^2-4b-4=9\\\left(-a\right)\left(a^2-3b-3\right)=9\end{cases}}\)
đến đây thì dễ rồi ha