\(x^2-11x+2m-4=0\)

tìm m để pt có 2 nghiệm x1;x2 thỏa mãn :

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2021

X2 -5X +m -3 =0     (#)

phtình (#) có 2 nghiệm phân biệt x1x2 

denta >0

(-5)2 - 4 . 1 . (m-3) > 0

25 -4m + 12 > 0

37 -4m >0

m<37/4

với m< 37/4 áp dụng định lí vi ét ta có :

  •  x1 +x2 =5
  • x1x2=m-3          =>  thay x1 + x2 vào (1)/ thay x1x2 vào (1)  
4 tháng 4 2017

Để PT có 2 nghiệm thì:

∆' = (m - 1)2 - (m - 5) > 0

<=> m2 - 3m + 6 > 0

Đúng với mọi m.

Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2m-2\\x_1.x_2=m-5\end{cases}}\)

Theo đề ta có:

(2x1 - 1)(2x2 - 1) = 3

<=> 4x1x2 - 2(x1 + x2) = 2

<=> 4(m - 5) - 2(2m - 2) = 2

<=> 0m = 18

Vậy không tồn tại n thỏa mãn

13 tháng 7 2017

a. Pt(1) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta=4\left(m-1\right)^2-4.m^2=4\left(m^2-2m+1\right)-4m^2=-8m+4>0\)

\(\Rightarrow m< \frac{1}{2}\)

b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1.x_2=m^2\end{cases}}\)

Từ \(x_1^2+x_2^2-3.x_1.x_2+3=0\Rightarrow\left(x_1+x_2\right)^2-5.x_1.x_2+3=0\)

\(\Rightarrow4\left(m^2-2m+1\right)-5m^2+3=0\Rightarrow-m^2-8m+7=0\)

\(\Rightarrow\orbr{\begin{cases}m=-4-\sqrt{23}\\m=-4+\sqrt{23}\left(l\right)\end{cases}}\)

Vậy \(m=-4-\sqrt{23}\)

14 tháng 4 2018

có 2 nghiệm phân biệt chi và chỉ khi \(\Delta^,=\left(m-2\right)^2-m^2-2m+3>0\)

                                                                 \(\Leftrightarrow m^2-4m+4-m^2-2m+3>0\)

                                                                     \(\Leftrightarrow-6m+7>0\Leftrightarrow m< \frac{7}{6}\)

5 tháng 7 2020

để phương trình có 2 nghiệm phân biệt thì :

\(\Delta>0< =>a^2-4b-4>0\)

\(< =>a^2>4b+4\)

Ta có : \(\hept{\begin{cases}x_1-x_2=3\\x_1^3+x_2^3=9\end{cases}}\)\(< =>\hept{\begin{cases}\left(x_1-x_2\right)^2=9\\\left(x_1+x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)=9\end{cases}}\)

\(< =>\hept{\begin{cases}\left(x_1+x_2\right)^2-4x_1x_2=9\\\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=9\end{cases}}\)

Theo hệ thức Vi ét : \(\hept{\begin{cases}x_1+x_2=-a\\x_1x_2=b+1\end{cases}}\)

Thay vào ta được hệ phương trình 2 ẩn sau :

\(\hept{\begin{cases}\left(-a\right)^2-4\left(b+1\right)=9\\\left(-a\right)\left[\left(-a\right)^2-3\left(b+1\right)\right]=9\end{cases}}\)

\(< =>\hept{\begin{cases}a^2-4b-4=9\\\left(-a\right)\left(a^2-3b-3\right)=9\end{cases}}\)

đến đây thì dễ rồi ha