K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2021

\(x^2 - 4x - 3 = 0\) có 1.(-3) < 0

=> Phương trình có hai nghiệm phân biệt

Áp dụng hệ thức Vi-et có \(x_1 + x_2 = 4\)    \(; x_1x_2 = -3\)

Mà \(A = \dfrac{x_1^2}{x_2} + \dfrac{x_2^2}{x_1}\)

\(= \dfrac{x_1^3 + x_2^3}{x_1x_2}\)

\(= \dfrac{(x_1 + x_2)(x_1^2 - x_1x_2 + x_2^2)}{x_1x_2}\)

\(=\dfrac{(x_1+x_2)[(x_1 +x_2)^2 - 3x_1x_2]}{x_1x_2}\)

\(=\dfrac{4.[4^2 - 3.(-3)]}{-3}\)

\(= \dfrac{-100}{3}\)