Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phương trình có hai nghiệm cùng dấu:
\(\left\{{}\begin{matrix}\Delta>0\\a.c>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(2m-1\right)^2-8\left(m-1\right)>0\\2\left(m-1\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4m^2-12m+9>0\\m>1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2m-3\right)^2>0\\m>1\end{matrix}\right.\) \(\Rightarrow m>1\)
Khi đó, ta có \(x_1+x_2=2m-1>2-1>0\Rightarrow\) hai nghiệm đều mang dấu dương
a,Với \(m=4\)thì phương trình tương đương với :
\(x^2-4x+3=0\)
Ta dễ dàng nhận thấy
\(a+b+c=1-4+3=0\)
nên phương trình sẽ có
\(\left\{{}\begin{matrix}x_1=1\\x_2=3\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là : \(\left\{1;3\right\}\)
b,sửa đề thành cộng nhé :)
Theo hệ thức vi ét ta có :
\(x_1+x_2=m\)
Theo đề bài ta có : \(\left[{}\begin{matrix}x_1+x_2=4\\x_1+x_2=-4\end{matrix}\right.\)
\(< =>\left[{}\begin{matrix}m=4\\m=-4\end{matrix}\right.\)
Ta có \(a+b+c=1-\left(m-3\right)+m-4=0\)
\(\Rightarrow\) phương trình luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=1\\x_2=m-4\end{matrix}\right.\)
TH1: \(x_1=3x_2\Rightarrow1=3\left(m-4\right)\Rightarrow m=\frac{13}{3}\)
TH2: \(x_2=3x_1\Rightarrow m-4=3.1\Rightarrow m=7\)
Lời giải:
a)
Khi $t=1$ thì PT trở thành:
\(x^2-2=0\Leftrightarrow x^2=2\Rightarrow x=\pm \sqrt{2}\)
b)
Để (1) có nghiệm thì \(\Delta'_{(1)}\geq 0\)
\(\Leftrightarrow (t-1)^2-(t^2-3)\geq 0\)
\(\Leftrightarrow -2t+4\geq 0\)
\(\Leftrightarrow t\leq 2\)
c) Để PT có 2 nghiệm thì \(\Delta'_{(1)}>0\Leftrightarrow t< 2\). Khi đó với $x_1,x_2$ là 2 nghiệm của (1), áp dụng định lý Vi-et ta có:
\(\left\{\begin{matrix} x_1+x_2=2(t-1)\\ x_1x_2=t^2-3\end{matrix}\right.\)
Tổng 2 nghiệm bằng tích 2 nghiệm, nghĩa là:
\(x_1+x_2=x_1x_2\)
\(\Leftrightarrow 2(t-1)=t^2-3\)
\(\Leftrightarrow t^2-2t-1=0\Rightarrow t=1\pm \sqrt{2}\)
Kết hợp với $t< 2$ suy ra $t=1-\sqrt{2}$
Để phương trình có 2 nghiệm trái dấu:
\(ac< 0\Rightarrow m\left(m-4\right)< 0\Rightarrow0< m< 4\)