Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(f\left(x\right)=m\left(x-1\right)^3\left(x+2\right)+2x+3\)
Do \(f\left(x\right)\) là hàm đa thức nên hiển nhiên nó liên tục trên R
Ta có: \(f\left(1\right)=5\) ; \(f\left(-2\right)=-1\)
\(\Rightarrow f\left(1\right).f\left(-2\right)< 0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-2;1\right)\) với mọi m
\(\Rightarrow\) Phương trình đã cho luôn có nghiệm với mọi m
Đặt \(f\left(x\right)=\left(1+m^2\right)\left(x-1\right)^3+x^2-2\)
\(f\left(x\right)\) là hàm đa thức nên liên tục trên R
\(f\left(1\right)=-1< 0\)
\(f\left(2\right)=1+m^2+4-2=m^2+3>0;\forall m\)
\(\Rightarrow f\left(1\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(1;2\right)\) với mọi m
Hay pt luôn có ít nhất 1 nghiệm dương với mọi m
Dễ thấy hàm \(f\left(x\right)=\left(1-m\right)x^5+9mx^2-16x-m\) liên tục trên R với mọi giá trị của m
Ta có:
\(f\left(-2\right)=\left(1-m\right).\left(-2\right)^5+9m.\left(-2\right)^2-16.\left(-2\right)-m\)
\(=-32\left(1-m\right)+4.9m+32-m=67m\)
\(f\left(0\right)=-m\)
\(f\left(2\right)=\left(1-m\right).2^5+9m.2^2-16.2-m\)
\(=32\left(1-m\right)+4.9m-32-m=3m\)
Nếu \(m=0\) thì ta có đpcm
Nếu \(m\ne0\) thì
\(\left\{{}\begin{matrix}f\left(-2\right).f\left(0\right)=-67m^2< 0\\f\left(0\right).f\left(2\right)=-3m^2< 0\end{matrix}\right.\)
Do đó pt đã cho có ít nhất một nghiệm trên mỗi khoảng \(\left(-2;0\right)\) và \(\left(0;2\right)\)
\(\Rightarrowđpcm\)
Vậy ta có điều phải chứng minh
Đặt \(f\left(x\right)=x^3-3x^2+5x-5\)
Do \(f\left(x\right)\) là hàm đa thức nên \(f\left(x\right)\) liên tục trên R
Ta có \(f\left(1\right)=-2\) ; \(f\left(2\right)=1\Rightarrow f\left(1\right).f\left(2\right)< 0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(1;2\right)\) hay \(f\left(x\right)\) luôn có ít nhất 1 nghiệm dương
a/ \(sin^2x+sinx-3=m\)
Đặt \(sinx=t\Rightarrow-1\le t\le1\Rightarrow t^2+t-3=m\)
Xét \(f\left(t\right)=t^2+t-3\) trên \(\left[-1;1\right]\)
\(f\left(-1\right)=-3;\) \(f\left(1\right)=-1\) ; \(f\left(-\frac{1}{2}\right)=-\frac{13}{4}\)
\(\Rightarrow-\frac{13}{4}\le f\left(t\right)\le-1\)
\(\Rightarrow\) Để pt có nghiệm thì \(-\frac{13}{4}\le m\le-1\)
b/ Tương tự ta được \(-2\le m\le2\)
c/ \(\Leftrightarrow2cos^2x-1-cosx+m=0\)
\(\Leftrightarrow2t^2-t-1=-m\) với \(t=cosx\)
Giống câu a, ta được \(-\frac{9}{8}\le-m\le2\Rightarrow-2\le m\le\frac{9}{8}\)
d/\(\Leftrightarrow sinx=\frac{-2m+3}{2}\)
\(-1\le sinx\le1\Rightarrow-1\le\frac{-2m+3}{2}\le1\)
\(\Rightarrow\frac{1}{2}\le m\le\frac{5}{2}\)
TH1: \(m=-1\) thỏa mãn (dễ dàng kiểm tra các giá trị \(f\left(-1\right)>0\) ; \(f\left(0\right)< 0\) ; \(f\left(3\right)>0\) nên pt có ít nhất 2 nghiệm thuộc (-1;0) và (0;3)
TH2: \(m>-1\):
\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}x^4\left[m\left(1-\dfrac{2}{x}\right)^2\left(1+\dfrac{9}{x}\right)+1-\dfrac{32}{x^4}\right]=+\infty.\left(m+1\right)=+\infty>0\)
\(\Rightarrow\) Luôn tồn tại 1 giá trị \(x=a\) đủ lớn sao cho \(f\left(a\right)>0\)
\(f\left(0\right)=-32< 0\Rightarrow f\left(a\right).f\left(0\right)< 0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm dương
\(f\left(-9\right)=9^4-32>0\Rightarrow f\left(-9\right).f\left(0\right)< 0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm âm thuộc \(\left(-9;0\right)\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 2 nghiệm
TH3: \(m< -1\) tương tự ta có: \(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}=+\infty.\left(m+1\right)=-\infty\)
\(\Rightarrow\) Luôn tồn tại 1 giá trị \(x=a>0\) đủ lớn và \(x=b< 0\) đủ nhỏ sao cho \(\left\{{}\begin{matrix}f\left(a\right)< 0\\f\left(b\right)< 0\end{matrix}\right.\)
Lại có \(f\left(-9\right)=9^4-32>0\) \(\Rightarrow\left\{{}\begin{matrix}f\left(-9\right).f\left(a\right)< 0\\f\left(-9\right).f\left(b\right)< 0\end{matrix}\right.\)
\(\Rightarrow\) Pt luôn có ít nhất 2 nghiệm thuộc \(\left(-\infty;-9\right)\) và \(\left(-9;+\infty\right)\)
Vậy pt luôn có ít nhất 2 nghiệm với mọi m