K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2023

a: Khi m = -4 thì:

\(x^2-5x+\left(-4\right)-2=0\)

\(\Leftrightarrow x^2-5x-6=0\)

\(\Delta=\left(-5\right)^2-5\cdot1\cdot\left(-6\right)=49\Rightarrow\sqrt{\Delta}=\sqrt{49}=7>0\)

Pt có 2 nghiệm phân biệt:

\(x_1=\dfrac{5+7}{2}=6;x_2=\dfrac{5-7}{2}=-1\)

9 tháng 4 2023

Anh làm câu b nữa ạ, sửa câu b \(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}=\dfrac{3}{2}\)

27 tháng 9 2015

ghét mí cái bài này :"<<

3 tháng 12 2016

1/ \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=x+\sqrt{\left(x+\frac{1}{4}\right)+\sqrt{x+\frac{1}{4}}+\frac{1}{4}}\)

\(=x+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=x+\left|\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right|=\left(x+\frac{1}{4}\right)+\sqrt{x+\frac{1}{4}}+\frac{1}{4}\)

\(=\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2\)

\(\Rightarrow m=\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2\)

Để pt trên có nghiệm thì \(\hept{\begin{cases}m>0\\\sqrt{m}-\frac{1}{2}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>0\\m\ge\frac{1}{4}\end{cases}}\Leftrightarrow m\ge\frac{1}{4}\)

Vậy với \(m\ge\frac{1}{4}\) thì pt trên có nghiệm.

Phương trình trên chỉ có một nghiệm thôi nhé, đó là \(x=m-\sqrt{m}\) với \(m\ge\frac{1}{4}\)

3 tháng 12 2016

cậu lm đc bài 2 câu a ko.. mk còn mỗi câu đấy