K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Để phương trình có hai nghiệm trái dấu thì (m-1)(m+4)(m+3)<0

=>m<-4 hoặc -3<m<1

b:Để phương trình có ít nhất 1 nghiệm thì 

(m-1)(m+4)(m+3)<0 hoặc \(\left\{{}\begin{matrix}m< >-3\\\left(m-1\right)^2-4\left(m+3\right)\left(m-1\right)\left(m+4\right)< 0\\\dfrac{-m+1}{m+3}< 0;\dfrac{\left(m-1\right)\left(m+4\right)}{\left(m+3\right)}>0\end{matrix}\right.\)

=>(m<-4 hoặc -3<m<1) hoặc \(\left\{{}\begin{matrix}m< >-3\\\left(m-1\right)\left(m-1-4m^2-28m-48\right)< 0\\\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< -3\end{matrix}\right.\\\left[{}\begin{matrix}m>1\\-4< m< -3\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)

=>(m<-4 hoặc -3<m<1) hoặc (m>1 hoặc m<-3)

 

18 tháng 3 2022

1) Để phương trình có hai nghiệm trái dấu thì

\(\left\{{}\begin{matrix}m\ne0\\\Delta'>0\\P< 0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}m\ne0\\-m+4>0\\\dfrac{m-3}{m}< 0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}m\ne0\\m< 4\\m< 3\end{matrix}\right.\) \(\Rightarrow\) 0\(\ne\)m<3.

Vậy: với 0\(\ne\)m<3, phương trình đã cho có hai nghiệm trái dấu.

2) Thừa hưởng từ kết quả câu 1, để nghiệm âm có giá trị tuyệt đối lớn hơn thì S<0 \(\Leftrightarrow\) \(\dfrac{-2\left(m-2\right)}{m}\)<0 \(\Leftrightarrow\) m>2.

Vậy: với 2<m<3, phương trình đã cho có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn.

3) Với 0\(\ne\)m<4 (điều kiện để phương trình có hai nghiệm):

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2\left(m-2\right)}{m}\\x_1x_2=\dfrac{m-3}{m}\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{4}{m}-2\\x_1x_2=1-\dfrac{3}{m}\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}\dfrac{x_1+x_2+2}{4}=\dfrac{1}{m}\\\dfrac{1-x_1x_2}{3}=\dfrac{1}{m}\end{matrix}\right.\) \(\Rightarrow\) 3x1+3x2+4x1x2+2=0.

4) Với 0\(\ne\)m<4 (điều kiện để phương trình có hai nghiệm):

A=x12+x22=(x1+x2)2-2x1x2=\(\left(\dfrac{-2\left(m-2\right)}{m}\right)^2-2.\dfrac{m-3}{m}\)=\(2-\dfrac{10}{m}+\dfrac{16}{m^2}\)=\(\left(\dfrac{4}{m}-\dfrac{5}{4}\right)^2+\dfrac{7}{16}\)\(\ge\dfrac{7}{16}\).

Dấu "=" xảy ra khi x=16/5 (nhận).

Vậy minA=7/16 tại m=16/5.

17 tháng 3 2019

\(\Delta=\left[-\left(m-1\right)\right]^2-4\left(m^2-3m\right)=m^2-2m+1-4m^2+12m=-3m^2+10m+1\)

Để pt có 2 nghiệm trái dấu thì 

\(\hept{\begin{cases}\Delta>0\\P< 0\end{cases}\Leftrightarrow\hept{\begin{cases}-3m^2+10m+1>0\\x_1+x_2=m-1< 0\end{cases}\Rightarrow}\hept{\begin{cases}m>\frac{5-2\sqrt{7}}{3}\\m< 1\end{cases}}}\)

4 tháng 8 2017

1.Ta có \(\Delta=4m^2-4\left(m^2-m-3\right)=4m+12\)

Để phương trình có 2 nghiệm phân biệt \(\Rightarrow\Delta>0\Rightarrow4m+12>0\Rightarrow m>-3\)

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m-3\end{cases}}\)

a. Phương trình có 2 nghiệm trái dấu \(\Rightarrow x_1.x_2< 0\Rightarrow m^2-m-3< 0\Rightarrow\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

Vậy \(\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

b. Phương trình có 2 nghiệm phân biệt dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2m>0\\x_1.x_2=m^2-m-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}m>0\\m< \frac{1-\sqrt{13}}{2}\end{cases}\left(l\right);\hept{\begin{cases}m>0\\m>\frac{1+\sqrt{13}}{2}\end{cases}\Leftrightarrow m>\frac{1+\sqrt{13}}{2}}}}\)

Vậy \(m>\frac{1+\sqrt{13}}{2}\)

2. a.Ta có \(\Delta=\left(2m-1\right)^2+4m=4m^2-4m+1+4m=4m^2+1\)

Ta thấy \(\Delta=4m^2+1>0\forall m\)

Vậy phương trình luôn có 2 nghiejm phân biệt với mọi m

b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1.x_2=-m\end{cases}}\)

Để \(x_1-x_2=1\Leftrightarrow\left(x_1-x_2\right)^2=1\Leftrightarrow\left(x_1+x2\right)^2-4x_1x_2=1\)

\(\Leftrightarrow\left(1-2m\right)^2-4.\left(-m\right)=1\Leftrightarrow4m^2-4m+1+4m=1\)

\(\Leftrightarrow m^2=0\Leftrightarrow m=0\)

Vậy \(m=0\)thoă mãn yêu cầu bài toán