Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo tại đây nhé:
Câu hỏi của KHÔNG CẦN BIẾT - Toán lớp 7 - Học toán với OnlineMath
a, thay m = 3 vào pt ta đc
x2 - ( 2 . 3 +1)x + 2.3 = 0
x2 - 7x + 6 =0
ta có a + b+c= 1 -7 + 6=0
\(\Rightarrow\)pt có 2 nghiệm pb x1 = 1
x2 = 6
b, x2 - (2m +1 )x + 2m=0
\(\Delta\)= [ - (2m + 1 )]2 - 4.2m
= 4m2 + 4m + 1 - 8m
= 4m2 - 4m + 1
= (2m-1)2 \(\ge\)0 \(\forall\)m
để pt có 2 nghiệm pb thì 2m - 1 \(\ne\)0
m \(\ne\)1/2
theo hệ thức vi ét ta có
x1 + x2 = 2m + 1
x1 x2 = 2m
ta có | x1| - |x2| = 2
( |x1| - |x2| )2 = 4
x12 - 2 |x1x2| + x22 =4
x12 + 2 x1x2 + x22 - 2x1x2 - 2 | x1x2| = 4
( x1 + x2)2 - 2 |x1x2| = 4
(2m + 1 )2 - 2|2m|=4 (1 )
+, nếu 2m \(\ge\)0 \(\Rightarrow\)m \(\ge\)0 thì
(1)\(\Leftrightarrow\)(2m + 1)2 - 4m = 4
4m2 + 4m + 1 - 4m = 4
4m2 = 3
m2 = 3/4
\(\Leftrightarrow\orbr{\begin{cases}m=\frac{\sqrt{3}}{2}\left(tm\right)\\m=-\frac{\sqrt{3}}{4}\left(ktm\right)\end{cases}}\)
+, 2m < 0 suy ra m < 0 thì
(1) : (2m + 1 )2 + 4m =4
4m2 + 4m + 1 + 4m = 4
4m2 + 8m - 3 =0
\(\Delta\)= 64 + 4.4.3 = 112 > 0
pt có 2 nghiệm pb x1 = \(\frac{-8+\sqrt{112}}{8}\)= \(\frac{-2+\sqrt{7}}{2}\)(ko tm)
x2 = \(\frac{-2-\sqrt{7}}{2}\)(tm)
vậy m \(\in\){\(\frac{\sqrt{3}}{2}\); \(\frac{-2-\sqrt{7}}{2}\)} thì ...........
ko bt có đúng ko nữa
#mã mã#
Bài 2 :
a,- Để phương trình có 2 nghiệm phân biệt thì : \(\Delta>0\)
<=> \(m^2-4.1.\left(2m-4\right)>0\)
<=> \(m^2-8m+16>0\)
<=> \(\left(m-4\right)^2>0\)
<=> \(m-4>0\)
<=> \(m>4\)
- Nên phương trình có 2 nghiệm phân biệt là :
\(x_1=\frac{m+\sqrt{m-4}}{2},x_2=\frac{m-\sqrt{m-4}}{2}\)
a, Ta có : \(x^2_1+x_2^2=13\)
=> \(\left(\frac{m+\sqrt{m-4}}{2}\right)^2+\left(\frac{m-\sqrt{m-4}}{2}\right)^2=13\)
=> \(\left(m+\sqrt{m-4}\right)^2+\left(m-\sqrt{m-4}\right)^2=52\)
=> \(m^2+2m\sqrt{m-4}+m-4+m^2-2m\sqrt{m-4}+m-4-52=0\)
=> \(2m^2+2m-60=0\)
=> \(m^2+m-30=0\)
=> \(m^2+\frac{m.2.1}{2}+\frac{1}{4}=30+\frac{1}{4}=\frac{121}{4}\)
=> \(\left(m+\frac{1}{2}\right)^2=\frac{121}{4}\)
=> \(\left[{}\begin{matrix}m=\sqrt{\frac{121}{4}}-\frac{1}{2}=5\left(TM\right)\\m=-\sqrt{\frac{121}{4}}-\frac{1}{2}=-6\left(KTM\right)\end{matrix}\right.\)
Vậy m có giá trị bằng 5 thỏa mãn điều kiện .
b, Làm tương tự nha .
b: \(PT\Leftrightarrow x^2+\left(m-3\right)x-m=0\)
\(\text{Δ}=\left(m-3\right)^2+4m\)
\(=m^2-6m+9+4m\)
\(=m^2-2m+1+8=\left(m-1\right)^2+8>0\)
Do đó: PT luon có hai nghiệm phân biệt
\(\dfrac{2}{x_1}+\dfrac{2}{x_2}=\dfrac{2x_1+2x_2}{x_1x_2}=\dfrac{2\cdot\left(-m+3\right)}{-m}=\dfrac{-2m+6}{-m}\)
\(\dfrac{4x_2}{x_1}+\dfrac{4x_1}{x_2}=\dfrac{4\left(x_1^2+x_2^2\right)}{x_1x_2}\)
\(=\dfrac{4\left(x_1+x_2\right)^2-8x_1x_2}{x_1x_2}=\dfrac{4\left(-m+3\right)^2-8\cdot\left(-m\right)}{-m}\)
\(=\dfrac{4\left(m-3\right)^2+8m}{-m}\)
\(=\dfrac{4m^2-24m+36+8m}{-m}=\dfrac{4m^2-16m+36}{-m}\)
c: \(A=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}+1\)
\(=\sqrt{\left(-m+3\right)^2-4\cdot\left(-m\right)}+1\)
\(=\sqrt{m^2-6m+9+4m}+1\)
\(=\sqrt{m^2-2m+1+8}+1\)
\(=\sqrt{\left(m-1\right)^2+8}+1\ge2\sqrt{2}+1\)
Dấu '=' xảy ra khi m=1
Tính delta => Tìm điều kiện của m để PT có 2 nghiệm x1, x2 là delta > 0.
Áp dụng Viets vào để tìm x1+x2 và x1.x2 theo m.
Sau đó: vì |x1-x2|=3 => (x1-x2)^2=9 <=> x12 + x22 -2x1.x2=9 <=> (x1+x2)2 - 4x1.x2=9
Sau đó thay x1+x2 và x1.x2 (theo Viets) vào để tìm được m.
Đối chiếu với đk của m là được
a) \(\Delta'=m^2-\left(m-4\right)=m^2-m+4=m^2-2.m.\frac{1}{2}+\frac{1}{4}+\frac{15}{4}\)
\(=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}>0;\forall m\)
=> phương trình (1) luôn có hai nghiệm phân biệt với mọi m
b) Áp dụng định lí Viet ta có:
\(x_1.x_2=m-4\)
\(x_1+x_2=-2m\)
=> \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=\left(-2m\right)^2-2\left(m-4\right)=4m^2-2m+8\)
=> \(x_1^3+x_2^3=\left(x_1+x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)=\left(-2m\right)\left(4m^2-2m+8-\left(m-4\right)\right)\)
\(=-2m\left(4m^2-3m+12\right)\)
Theo bài ra ta có:
\(x_1+x_2=\frac{x_1^2}{x_2}+\frac{x_2^2}{x_1}\)
\(\Leftrightarrow x_1+x_2=\frac{x_1^3+x_2^3}{x_1.x_2}\)
Thay vào ta có:
\(-2m=\frac{-2m\left(4m^2-3m+12\right)}{m-4}\)( đk m khác 4)
\(\Leftrightarrow\orbr{\begin{cases}m=0\\m-4=4m^2-3m+12\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m=0\left(tm\right)\\4m^2-4m+16=0\left(l\right)\end{cases}\Leftrightarrow m=0}\)
Vì \(4m^2-4m+16=\left(2m-1\right)^2+15>0\) với mọi m
Vậy m =0
có \(\Delta'=\left[-\left(m-1\right)\right]^2-m^2+m+5\)
\(\Delta'=m^2-2m+1-m^2+m+5\)
\(\Delta'=-m+6\)
để pt (1) có 2 nghiệm \(x_1;x_2\) \(\Leftrightarrow-m+6>0\)
\(\Leftrightarrow m< 6\)
theo định lí \(Vi-et\) \(\hept{\begin{cases}x_1+x_2=2m-2\\x_1.x_2=m^2-m-5\end{cases}}\)
theo bài ra \(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{10}{3}=0\)
\(\Leftrightarrow\frac{x_1^2+x_2^2}{x_1.x_2}+\frac{10}{3}=0\) ( \(x_1.x_2\ne0\Leftrightarrow m^2-m-5\ne0\))
\(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1.x_2}{x_1.x_2}=\frac{-10}{3}\)
\(\Leftrightarrow\frac{\left(2m-2\right)^2-2.\left(m^2-m-5\right)}{m^2-m-5}=-\frac{10}{3}\)
\(\Leftrightarrow\frac{4m^2-8m+4-2m^2+2m+10}{m^2-m-5}=\frac{-10}{3}\)
\(\Leftrightarrow\left(2m^2-6m+14\right).3=-10.\left(m^2-m-5\right)\)
\(\Leftrightarrow6.\left(m^2-3m+7\right)=-10.\left(m^2-m-5\right)\)
\(\Leftrightarrow-3m^2+9m-21=5m^2-5m-25\)
\(\Leftrightarrow-3m^2+9m-21-5m^2+5m+25=0\)
\(\Leftrightarrow-8m^2+14m+4=0\)
\(\Leftrightarrow4m^2-7m-2=0\) \(\left(2\right)\)
từ PT (2) có \(\Delta=\left(-7\right)^2-4.4.\left(-2\right)=49+32=81>0\Rightarrow\sqrt{\Delta}=9\)
vì \(\Delta>0\) nên PT có 2 nghiệm phân biệt
\(m_1=\frac{7-9}{8}=\frac{-1}{4}\) ( TM ĐK
\(m_2=\frac{7+9}{8}=2\) \(m< 6\)và \(m^2-m-5\ne0\))
Bài này bạn áp dụng vi-ét là ra ngay nha !
Chúc bạn học tốt !
b/ \(\Delta'=m^2+4m+11=\left(m+2\right)^2+7>0\) \(\forall m\)
\(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt
c/ Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-4m-11\end{matrix}\right.\)
\(\frac{x_1}{x_2-1}+\frac{x_2}{x_1-1}=-5\Leftrightarrow\frac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_1-1\right)\left(x_2-1\right)}=-5\)
\(\Leftrightarrow\frac{x_1^2+x_2^2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=-5\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=-5\)
\(\Leftrightarrow\frac{4m^2+8m+22-2m}{-4m-11-2m+1}=-5\Leftrightarrow4m^2+6m+22=30m+50\)
\(\Leftrightarrow4m^2-24m-28=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=7\end{matrix}\right.\)
a) Khi m = 1, pt trở thành:
\(x^2-2x-15=0\\ \Leftrightarrow x^2+3x-5x-15=0\\ \Leftrightarrow x\left(x+3\right)-5\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)
\(b)\Delta'=b'^2-ac\\ =\left(-m\right)^2-1\left(-4m-11\right)\\ =m^2+4m+11\\ =\left(m^2+2.m.2+2^2\right)+7\\ =\left(m+2\right)^2+7>\forall m\)
\(c)\)Theo hệ thức Vi - ét: \(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}=2m\\x_1.x_2=\frac{c}{a}=-4m-11\end{matrix}\right.\)
\(\frac{x_1}{x_2-1}+\frac{x_2}{x_1-1}=-5\\ \Leftrightarrow\frac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_2-1\right)\left(x_1-1\right)}=-5\\ \Leftrightarrow\frac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_2-x_1+1}=-5\\ \Leftrightarrow\frac{\left(x_1^2+x_2^2\right)-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=-5\\ \Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=-5\)
Thay vào là được nhé! Tự tiếp giúp mình
Mình sửa lại đề : x2 - 5x + m = 0 (1)
Với m = 6
Phương trình trở thành :
x2 - 5x + 6 = 0
\(\Delta=\left(-5\right)^2-4.1.6=1>0\)
=> Phương trình 2 nghiệm phân biệt
\(x_1=\dfrac{5+\sqrt{1}}{2}=3;x_2=\dfrac{5-\sqrt{1}}{2}=2\)
Tập nghiệm S = {3;2}
b) Với m = 0 có (1) <=> x2 - 5x = 0
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=0\end{matrix}\right.\)(loại)
Với \(m\ne0\) : có \(\Delta=25-4m\)
Phương trình có nghiệm khi \(\Delta\ge0\Leftrightarrow m\le\dfrac{25}{4}\)
Hệ thức Viete : \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m\end{matrix}\right.\)
Khi đó |x1 - x2| = 3
<=> (x1 - x2)2 = 9
<=> (x1 + x2)2 - 4x1x2 = 9
<=> 52 - 4m = 9
<=> m = 4 (tm)
Vậy m = 4 thì thóa mãn yêu cầu đề