\(\dfrac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2022

\(\Delta=\left[-2\left(m-1\right)\right]^2-4\left(m-2\right)\left(m+1\right)\)

    \(=4m^2-8m+4-4\left(m^2+m-2m-2\right)\)

   \(=4m^2-8m+4-4m^2+4m+8\)

   \(=-4m+12\)

Để pt có 2 nghiệm thì \(\Delta>0\)

                                    \(\Leftrightarrow-4m+12>0\)

                                     \(\Leftrightarrow m< 3\)

Theo hệ thức Vi-ét, ta có:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m-2}{m+1}\\x_1x_2=\dfrac{m-2}{m+1}\end{matrix}\right.\)

\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{7}{4}\)

\(\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=\dfrac{7}{4}\)

\(\Leftrightarrow\dfrac{2m-2}{m+1}:\dfrac{m-2}{m+1}=\dfrac{7}{4}\)

\(\Leftrightarrow\dfrac{2m-2}{m-2}=\dfrac{7}{4}\)

\(\Leftrightarrow8m-8=7m-14\)

\(\Leftrightarrow m=-6\left(tm\right)\)

Vậy \(m=-6\)

24 tháng 5 2022

Khiếp, nhanh thế, nhường iem đi cj :v

AH
Akai Haruma
Giáo viên
24 tháng 3 2019

Lời giải:

Để PT có 2 nghiệm phân biệt $x_1,x_2$ thì:

\(\Delta'=(m+2)^2-(m^2+m+3)>0\)

\(\Leftrightarrow 3m+1>0\Leftrightarrow m> \frac{-1}{3}\)

Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=2(m+2)\\ x_1x_2=m^2+m+3\end{matrix}\right.\)

\(x_1x_2=m^2+m+3=(m+\frac{1}{2})^2+\frac{11}{4}\neq 0, \forall m>\frac{-1}{3}\) nên $x_1,x_2\neq 0$ với mọi \(m> \frac{-1}{3}\).

Khi đó:

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=1\)

\(\Leftrightarrow \frac{x_1^2+x_2^2}{x_1x_2}=4\)

\(\Leftrightarrow \frac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=4\)

\(\Leftrightarrow \frac{(x_1+x_2)^2}{x_1x_2}=6\Rightarrow (x_1+x_2)^2=6x_1x_2\)

\(\Leftrightarrow 4(m+2)^2=6(m^2+m+3)\)

\(\Leftrightarrow 2m^2-10m+2=0\)

\(\Leftrightarrow m=\frac{5\pm \sqrt{21}}{2}\) (thỏa mãn)

1 tháng 9 2018

a) để phương trình có 2 nghiệm : \(\Leftrightarrow\left\{{}\begin{matrix}m-3\ne0\\\Delta'\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-3\ne0\\\left(m+2\right)^2-\left(m-3\right)\left(m+1\right)\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\6m+7\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{7}{6}\end{matrix}\right.\)

thay \(x_1=2\) vào phương trình ta có :

\(4\left(m-3\right)-4\left(m+2\right)+m+1=0\Leftrightarrow m=19\)

áp dụng hệ thức vi ét ta có : \(x_1+x_2=\dfrac{2\left(m+2\right)}{m-3}=\dfrac{2\left(21\right)}{16}=\dfrac{21}{8}\)

\(\Rightarrow x_2=\dfrac{21}{8}-x_1=\dfrac{21}{8}-2=\dfrac{5}{8}\)

vậy ....................................................................................................

b) áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+2\right)}{m-3}\\x_1x_2=\dfrac{m+1}{m-3}\end{matrix}\right.\)

ta có : \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=10\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=10\Leftrightarrow\dfrac{2\left(m+2\right)}{m-3}:\dfrac{m+1}{m-3}=10\)

\(\Leftrightarrow\dfrac{2m+4}{m+1}=10\Leftrightarrow2m+4=10m+10\Leftrightarrow m=\dfrac{-3}{4}\left(L\right)\)

vậy không có m thỏa mãn điều kiện bài toán .

1 tháng 9 2018

câu 2) a) để phương trình có 2 nghiệm cùng dấu \(\Leftrightarrow\left\{{}\begin{matrix}m-2\ne0\\\Delta'\ge0\\p>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-2\ne0\\\left(m+1\right)^2-\left(m-2\right)\left(m-1\right)\ge0\\\dfrac{m-1}{m-2}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\5m-1\ge0\\\left(m-1\right)\left(m-2\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m\ge\dfrac{1}{5}\\\left[{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>2\) vậy \(m>2\)

b) áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2\left(m+1\right)}{m-2}\\x_1x_2=\dfrac{m-1}{m-2}\end{matrix}\right.\)

ta có : \(x_1^3+x_2^3=64\Leftrightarrow\left(x_1+x_2\right)^3-3\left(x_1x_2\right)\left(x_1+x_2\right)=64\)

\(\left(\dfrac{2m+2}{2-m}\right)^3+6\left(\dfrac{m-1}{m-2}\right)\left(\dfrac{m+1}{m-2}\right)=64\)

\(\Leftrightarrow\dfrac{\left(-2m-2\right)^3}{\left(m-2\right)^3}+\dfrac{6\left(m-1\right)\left(m+1\right)\left(m-2\right)}{\left(m-2\right)^3}=64\)

\(\Leftrightarrow\dfrac{-8m^3-24m^2-24m-8+6m^2-12m^3-6m+12}{m^2-6m^2+12m-8}=64\)

\(\Leftrightarrow\dfrac{-20m^3-18m^2-30m+4}{m^3-6m^2+12m-8}=64\)

\(\Leftrightarrow84m^3-402m^2+798m-516=0\)

giải nốt nha .

13 tháng 3 2018

a,thay m=1 vào phương trình ta được :

x2-4.1x+3.12-3=0

x2-4x=0

x(x-4)=0

x=0

x-4=0⇔x=4

phần b mình chưabiết lm ạ

14 tháng 4 2018

b) \(\Delta'=4m^2-3m^2+3=m^2+3>0\Rightarrow\) pt luôn có 2 nghiệm phân biệt

Theo hệ thức Viet ta có : \(\left\{{}\begin{matrix}x_1+x_2=4m\\x_1x_2=3m^2-3\end{matrix}\right.\)

Ta có: \(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\\ =16m^2-12m^2+12=4m^2+12\Rightarrow\left|x_1-x_2\right|=\sqrt{4m^2+12}\)

\(\left|\dfrac{x_1+x_2+4}{x_1-x_2}\right|=\left|\dfrac{4m+4}{\sqrt{4m^2+12}}\right|=\left|\dfrac{2m+2}{\sqrt{m^2+3}}\right|\)

Đặt \(y=\left|\dfrac{2m+2}{\sqrt{m^2+3}}\right|\ge0\Rightarrow y^2=\dfrac{\left(2m+2\right)^2}{m^2+3}\Rightarrow y^2m^2+3y^2=4m^2+8m+4\\ \Leftrightarrow\left(y^2-4\right)m^2-8m+3y^2-4=0\)

\(\Delta'=16-\left(3y^2-4\right)\left(y^2-4\right)\ge0\\ \Leftrightarrow-3y^4+16y^2\ge0\\ \Leftrightarrow y^2\le\dfrac{16}{3}\Leftrightarrow0\le y\le\dfrac{4\sqrt{3}}{3}\)

y đạt GTLN \(\Leftrightarrow\Delta'=0\Rightarrow m=\dfrac{4}{y^2-4}=\dfrac{4}{\dfrac{16}{3}-4}=3\)

31 tháng 7 2018

a) để phương trình có 1 nghiệm bằng 2

\(\Leftrightarrow m2^2-2.2-4m-1=0\Leftrightarrow-5=0\Rightarrow m\in\varnothing\)

b) để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\Delta'>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\1^2+m\left(4m+1\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\4m^2+m+1\end{matrix}\right.\) \(\Leftrightarrow m\ne0\)

áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2}{m}\\x_1x_2=\dfrac{-4m-1}{m}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x_2=\dfrac{2}{m}\\2\left(\dfrac{2}{3m}\right)^2=\dfrac{-4m-1}{m}\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)

c) ta có : \(x_1< 2< x_2\Leftrightarrow\)\(x_1< mx_1x_2< x_2\Leftrightarrow\dfrac{1}{x_2}< m< \dfrac{1}{x_1}\)

\(\Leftrightarrow\dfrac{m}{1-\sqrt{4m^2+m+1}}< m< \dfrac{m}{1+\sqrt{4m^2+m+1}}\)

\(\Leftrightarrow\dfrac{m}{1-\sqrt{4m^2+m+1}}< m< \dfrac{m}{1+\sqrt{4m^2+m+1}}\)

\(\Leftrightarrow m< 0\) vậy \(m< 0\)

d) áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2}{m}\\x_1x_2=\dfrac{-4m-1}{m}\end{matrix}\right.\)

ta có : \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{2}{m}.\left(\dfrac{m}{-4m-1}\right)=2\)

\(\Leftrightarrow\dfrac{2}{-4m-1}=2\Leftrightarrow m=\dfrac{-1}{2}\) vậy \(m=\dfrac{-1}{2}\)

12 tháng 4 2018

\(\Delta'\) = (-m2)2 - m2 - 2 = m4 - m2 - 2

để pt có 2 nghiệm x1, x2 thì m4 - m2 - 2 \(\ge\) 0

=> (m2 - \(\dfrac{1}{2}\))2 - \(\dfrac{9}{4}\) \(\ge\) 0

\(\left\{{}\begin{matrix}m^2-\dfrac{1}{2}\le-\dfrac{3}{2}\\m^2-\dfrac{1}{2}\ge\dfrac{3}{2}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}m^2\le-1\left(loai\right)\\m^2\ge2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}m\ge\sqrt{2}\\m\le-\sqrt{2}\end{matrix}\right.\)

theo hệ thức Vi - ét : \(\left\{{}\begin{matrix}x_1+x_2=2m^2\\x_1.x_2=m^2+2\end{matrix}\right.\)

ta có : \(\dfrac{1}{\sqrt{2}}\)x1x2 = 3\(\sqrt{x_1+x_2}\) <=> \(\dfrac{1}{\sqrt{2}}\).(m2 + 2) - 3.\(\sqrt{2m^2}\) = 0

<=> \(\dfrac{\sqrt{2}.m^2}{2}\) + \(\sqrt{2}\) - \(3\sqrt{2}.m\) = 0

<=> m2 - 6m + 2 = 0

\(\Delta'\) = (-3)2 - 2 = 7 > 0 => pt có 2 nghiệm pb

m1 = \(\dfrac{3-\sqrt{7}}{1}\) = 3-\(\sqrt{7}\) ( loại )

m2 = 3+\(\sqrt{7}\) (TM )

vậy để pt có 2 nghiêm jthoar mãn đk trên thì m = 3+\(\sqrt{7}\)

29 tháng 4 2018

camon bn nkahihi

24 tháng 5 2020

\(x^2+3x+m-3=0\)

Ta có \(\Delta=b^2-4ac\)

             \(=3^2-4.1.\left(m-3\right)\)

             \(=9-4m+12\)

             \(=21-4m\)

Đẻ pt có 2 nghiệm \(x_1;x_2\)\(\Leftrightarrow\Delta\ge0\Leftrightarrow21-4m\ge0\)

                                                  \(\Leftrightarrow x\le\frac{21}{4}\)

Áp dụng vi-ét ta có 

\(\hept{\begin{cases}x_1+x_2=-3\\x_1.x_2=m-3\end{cases}}\)

Ta có \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=5\Leftrightarrow\frac{x_1^2+x_2^2}{x_1.x_2}=5\)

                                        \(\Leftrightarrow x_1^2+x_2^2=5x_1x_2\)

                                        \(\Leftrightarrow x_1^2+x_2^2-5x_1.x_2=0\)

                                       \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-5x_1x_2=0\)

                                        \(\Leftrightarrow\left(x_1+x_2\right)^2-7x_1x_2=0\)

                                       \(\Leftrightarrow\left(-3\right)^2-7\left(m-3\right)=0\)

                                        \(\Leftrightarrow9-7m+21=0\)

                                        \(\Leftrightarrow30-7m=0\)

                                        \(\Leftrightarrow7m=30\)

                                       \(\Leftrightarrow m=\frac{30}{7}\) (TM)

Vậy \(m=\frac{30}{7}\) thì thỏa mãn bài toán 

25 tháng 5 2020

vẽ hộ cái hình

8 tháng 6 2017

đúng r đó bn, nhìn nè:

\(\left(x_1-x_2\right)\left(x_1x_2+1\right)=x_1^2x_2+x_1-x_1x_2^2-x_2\)

3 tháng 6 2017

Để pt (1) có nghiệm thì: \(\Delta>0\)\(\Leftrightarrow m^2+4>0\)

\(\Rightarrow\)đúng với \(\forall m\) ( vì \(m^2>0\) và 4 hiển nhiên >0)

theo viet, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-1\end{matrix}\right.\)

ta có \(P=\dfrac{x_1^2+x_1-1}{x_1}-\dfrac{x_2^2+x_2-1}{x_2}\)

\(\Leftrightarrow P=\dfrac{x_1^2x_2+x_1x_2-x_2-x_1x_2^2-x_1x_2+x_1}{x_1x_2}\)

\(\Leftrightarrow P=\dfrac{\left(x_1-x_2\right)\left(x_1x_2+1\right)}{x_1x_2}=\dfrac{\left(x_1-x_2\right)0}{x_1x_2}\)( vì \(x_1x_2=-1\) mà -1+1=0)

\(\Leftrightarrow P=0\)

28 tháng 4 2018

xét pt \(x^2-2\left(m-2\right)x+m^2+2m-3=0\) (1)

\(\Delta'=\left[-\left(m-2\right)\right]^2-m^2-2m+3\)

\(\Delta'=m^2-4m+4-m^2-2m+3\)

\(\Delta'=-6m+7\)

để pt (1) có 2 nghiệm pb thì \(\Delta'>0\Leftrightarrow-6m+7>0\)

\(\Leftrightarrow-6m>-7\Leftrightarrow m< \dfrac{7}{6}\)

có vi -ét \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)\\x_1x_2=m^2+2m-3\end{matrix}\right.\)

theo bài ra ta có \(\dfrac{1}{x_1.x_2}=\dfrac{1}{5}\)

\(\Rightarrow x_1.x_2=5\) \(\left(x_1x_2\ne0\right)\)

\(m^2+2m-3=5\)

\(\Leftrightarrow m^2+2m-8=0\) (2)

\(\Delta'=1^2-\left(-8\right)=1+8=9>0\Rightarrow\sqrt{\Delta'}=3\)

\(\Delta'>0\) nên phương trình (2) có 2 nghiệm phân biệt

\(m_1=-1+3=-2\) ( TM

\(m_2=-1-3=-4\) \(m< \dfrac{7}{6}\) )

vậy .....