K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2022

Thay `x=-2` vào pt ta có:

\(\left(m-3\right).\left(-2\right)^2-2.m.\left(-2\right)+m+2=0\\ \Leftrightarrow\left(m-3\right).4+4.m+m+2=0\\ \Leftrightarrow4m-12+4m+m+2=0\\ \Leftrightarrow9m-10=0\\ \Leftrightarrow m=\dfrac{10}{9}\)

Vậy để pt có 1 nghiệm là `x=-2` thì `m=10/9`

16 tháng 5 2022

ng thành công luôn tự chủ và độc lập nhưng ko một mik , 1 vote

NV
20 tháng 8 2021

\(\Delta'=m-1\ge0\Rightarrow m\ge1\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-m+1\end{matrix}\right.\)

\(A=x_1^3+x_2^3-2\left(x_1+x_2\right)\)

\(=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-2\left(x_1+x_2\right)\)

\(=8m^3-3.2m\left(m^2-m+1\right)-4m\)

\(=2m^3+6m^2-10m\)

\(=2\left(m^3+3m^2-5m+1\right)-2\)

\(=2\left(m-1\right)\left[\left(m^2-1\right)+4m\right]-2\)

Do \(m\ge1\Rightarrow\left\{{}\begin{matrix}m-1\ge0\\\left(m^2-1\right)+4m>0\end{matrix}\right.\)

\(\Rightarrow2\left(m-1\right)\left[\left(m^2-1\right)+4m\right]\ge0\)

\(\Rightarrow A\ge-2\)

\(A_{min}=-2\) khi \(m=1\)

NV
15 tháng 2 2022

3.

Phương trình có 2 nghiệm khi:

\(\left\{{}\begin{matrix}m+1\ne0\\\Delta=m^2-12\left(m+1\right)\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\ne-1\\\left[{}\begin{matrix}m\ge6+4\sqrt{3}\\m\le6-4\sqrt{3}\end{matrix}\right.\end{matrix}\right.\) (1)

Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{m}{m+1}\\x_1x_2=\dfrac{3}{m+1}\end{matrix}\right.\)

Hai nghiệm cùng lớn hơn -1 \(\Rightarrow-1< x_1\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\dfrac{x_1+x_2}{2}>-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_1+1>0\\x_1+x_2>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{m+1}-\dfrac{m}{m+1}+1>0\\-\dfrac{m}{m+1}>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{m+1}>0\\\dfrac{m+2}{m+1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>-1\)

Kết hợp (1) \(\Rightarrow\left[{}\begin{matrix}-1< m< 6-4\sqrt{3}\\m\ge6+4\sqrt{3}\end{matrix}\right.\)

Những bài này đều là dạng toán lớp 10, thi lớp 9 chắc chắn sẽ không gặp phải

NV
15 tháng 2 2022

1. Có 2 cách giải:

C1: đặt \(f\left(x\right)=x^2+2mx-3m^2\)

\(x_1< 1< x_2\Leftrightarrow1.f\left(1\right)< 0\Leftrightarrow1+2m-3m^2< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)

C2: \(\Delta'=4m^2\ge0\) nên pt luôn có 2 nghiệm

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-3m^2\end{matrix}\right.\)

\(x_1< 1< x_2\Leftrightarrow\left(x_1-1\right)\left(x_2-1\right)< 0\)

\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1< 0\)

\(\Leftrightarrow-3m^2+2m+1< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)

26 tháng 3 2019

1.a

ta có: \(\Delta'=m^2-\left(m-1\right)\left(m+1\right)\)

 = m^2-m^2+1=1>0

vậy pt luôn có 2 no vs mọi m

26 tháng 3 2019

a)\(\Delta=m^2-\left(m+1\right)\left(m-1\right)=m^2-m^2+1=1\)

Vậy pt luôn có 2 nghiệm với mọi m

b)

Theo hệ thức Vi ét ,ta có:

\(\hept{\begin{cases}x_1+x_2=\frac{2m}{m-1}\\x_1\cdot x_2=\frac{m+1}{m-1}=1+\frac{2}{m-1}\end{cases}}\)

mà \(\frac{m+1}{m-1}=5\Rightarrow m=1,5\)

vậy \(x_1\cdot x_2=\frac{2m}{m-1}=6\)

\(\hept{\begin{cases}x_1+x_2=\frac{2m}{m-1}=2+\frac{2}{m-1}\\x_1\cdot x_2=\frac{m+1}{m-1}=1+\frac{2}{m-1}\end{cases}}\)

\(\Rightarrow x_1+x_2-x_1\cdot x_2=2+\frac{2}{m-1}-1-\frac{2}{m-1}=1\)

c)

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{5}{2}=0\Rightarrow\frac{x_1^2+x_2^2+2x_1x_2+3x_1x_2}{2x_1x_2}=0\Rightarrow\left(x_1+x_2\right)^2+3x_1x_2=0\)

\(\Leftrightarrow\left(\frac{2m}{m-1}\right)^2+\frac{3\left(m+1\right)}{m-1}=0\Rightarrow m=\pm\sqrt{\frac{3}{7}}\)

Δ=(-2m)^2-4(m^2-m)

=4m^2-4m^2+4m=4m

Để (1) có 2 nghiệm phân biệt thì 4m>0

=>m>0

x1^2+x2^2=4-3x1x2

=>(x1+x2)^2-2x1x2=4-3x1x2

=>(2m)^2+m^2-m=4

=>4m^2+m^2-m-4=0

=>5m^2-m-4=0

=>5m^2-5m+4m-4=0

=>(m-1)(5m+4)=0

=>m=1 hoặc m=-4/5(loại)

5 tháng 6 2020

x1<2<x2

24 tháng 7 2021

mn giúp em gấp

24 tháng 7 2021

Ta có :

\(|x^2-2mx+1|=x+1 \\ \Leftrightarrow x^2-2mx+1=x+1 (x\geq -1) (1)\\ \ hoặc \ x^2-2mx+1=-x-1 ( x< -1) (2)\)

TH1: pt (1) tương đương:

\(x^2-x(2m+1)=0 \\ \Leftrightarrow x=0 (thỏa\ mãn) \ hoặc \ x=2m+1\)

Để pt có nghiệm duy nhất <=> 2m+1  < -1 <=> m<-1

TH2: pt (2) tương đương:

\(x^2-x(2m-1)+2=0\)

\(\Delta = (2m-1)^2-4.2=4m^2-4m-7\)

+) Nếu pt có nghiệm duy nhất 

<=> \(m=\frac{1+2\sqrt{2}}{2} \ hoặc \ m=\frac{1-2\sqrt{2}}{2}\)

*) \(m=\frac{1+2\sqrt{2}}{2} \Rightarrow x = \sqrt{2} \) (loại vì căn 2 >-1 nên pt vô nghiệm) 

*) \(m=\frac{1-2\sqrt{2}}{2} \Rightarrow x=-\sqrt{2}\) (thỏa mãn)

+) Nếu pt có 2 nghiệm x1, x2 sao cho x1 < -1 < = x2

<=> (x1+1)(x2+1) >=0 và x1+x2 >-2

<=> P + S + 1 >=0 và S>-2

Delta > 0 <=> \(m>\frac{1+2\sqrt{2}}{2} \ hoặc \ m<\frac{1-2\sqrt{2}}{2}\)

Theo viet ta có : S = 2m-1 ; P = 2 

=> P + S + 1 =2m-1 + 1+ 2 >= 0 <=> m >= -1 

Và S = 2m-1 > -2 <=> m > -1/2 

<=> m> -1/2  kết hợp \(m>\frac{1+2\sqrt{2}}{2} \ hoặc \ m<\frac{1-2\sqrt{2}}{2}\)

<=> \(m>\frac{1+2\sqrt{2}}{2} \)

Vậy \(m>\frac{1+2\sqrt{2}}{2} ; m=\frac{1-2\sqrt{2}}{2} ; hoặc \ m< -1\)

NV
28 tháng 2 2023

\(\Delta'=m^2-2m+3=\left(m-1\right)^2+2>0\) ; \(\forall m\)

Vậy phương trình đã cho có 2 nghiệm phân biệt với mọi m

22 tháng 3 2022

a.Bạn thế vào nhé

b.\(\Delta=3^2-4m=9-4m\)

Để pt vô nghiệm thì \(\Delta< 0\)

\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)

c.Ta có: \(x_1=-1\)

\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)

d.Theo hệ thức Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)

1/ \(x_1^2+x_2^2=34\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)

\(\Leftrightarrow\left(-3\right)^2-2m=34\)

\(\Leftrightarrow m=-12,5\)

..... ( Các bài kia tương tự bạn nhé )

6 tháng 2 2022

a) thay m=5 vào pt (1) dc

\(\left(5-4\right)x^2-2.5x+5-2=0\)

<=>\(x^2-10x+3=0\)

<=>\(\left(x-5-\sqrt{22}\right)\left(x-5+\sqrt{22}\right)=0\)

<=>\(\left[{}\begin{matrix}x=5+\sqrt{22}\\x=5-\sqrt{22}\end{matrix}\right.\)

b)Thay x=-1 vào pt (1) dc

\(\left(m-4\right)\left(-1\right)^2-2m\left(-1\right)+m-2=0\)

<=>\(m-4+2m+m-2=0\)

<=>\(4m=6\)

<=>m=\(\dfrac{3}{2}\)

Pt có nghiệm nên

Áp dụng hệ thức Vi-ét ta có

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m}{m-4}\left(2\right)\\x_1.x_2=\dfrac{m-2}{m-4}\left(3\right)\end{matrix}\right.\)

Thay m=\(\dfrac{3}{2}\)và x=-1 vào pt (2) ta dc

\(-1+x=\dfrac{2.\dfrac{3}{2}}{\dfrac{3}{2}-4}=-\dfrac{6}{5}\)

=>x=\(-\dfrac{1}{5}\)

c)\(\Delta'=\left[-\left(m\right)\right]^2-\left(m-4\right)\left(m-2\right)=m^2-\left(m^2-6m+8\right)=6m-8\)

pt có nghiệm kép <=>\(\Delta'=0\)

                             <=>\(6m-8=0< =>m=\dfrac{4}{3}\)