\(ax^2-bx+b=0\)(ab>0) có các nghiệm là x1, x2. CMR x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 6 2020

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{b}{a}=\frac{ab}{a^2}>0\\x_1x_2=\frac{b}{a}=\frac{ab}{a^2}>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1>0\\x_2>0\end{matrix}\right.\)

\(\sqrt{\frac{x_1}{x_2}}+\sqrt{\frac{x_2}{x_1}}-\sqrt{\frac{b}{a}}=\frac{x_1+x_2}{\sqrt{x_1x_2}}-\sqrt{\frac{b}{a}}=\frac{\frac{b}{a}}{\sqrt{\frac{b}{a}}}-\sqrt{\frac{b}{a}}=\sqrt{\frac{b}{a}}-\sqrt{\frac{b}{a}}=0\)

13 tháng 7 2020
Chi mà khó rứa
23 tháng 3 2020

Đặt \(t=\sqrt{x}\left(t\ge0\right)\Rightarrow t^2-\sqrt{6}t-3+2m=0\left(1\right)\)

Giả sử phương trình $(1)$ có nghiệm $t_1;t_2$ thì \(t_1+t_2=\sqrt{6}\)\(t_1.t_2=2m-3\)

\(t_1=\sqrt{x_1}\left(t_1\ge0\right)\Rightarrow x_1=t_1^2\)\(t_2=\sqrt{x_2}\left(t_2\ge0\right)\Rightarrow x_2=t_2^2\)

Ta có: \(\dfrac{{{x_1} + {x_2}}}{{\sqrt {{x_1}} + \sqrt {{x_2}} }} = \dfrac{{\sqrt {24} }}{3}\)

\(\Leftrightarrow \dfrac{{t_1^2 + t_2^2}}{{{t_1} + {t_2}}} = \dfrac{{\sqrt {24} }}{3}\\ \Leftrightarrow \dfrac{{{{\left( {{t_1} + {t_2}} \right)}^2} - 2{t_1}{t_2}}}{{{t_1} + {t_2}}} = \dfrac{{\sqrt {24} }}{3}\\ \Leftrightarrow \dfrac{{6 + 6 - 4m}}{{\sqrt 6 }} = \dfrac{{\sqrt {24} }}{3} \Leftrightarrow m = 2\left( {tm} \right)\)

23 tháng 3 2020

thank you very much!!

21 tháng 3 2017

ta thấy pt luôn có no . Theo hệ thức Vi - ét ta có:

x1 + x2 = \(\dfrac{-b}{a}\) = 6

x1x2 = \(\dfrac{c}{a}\) = 1

a) Đặt A = x1\(\sqrt{x_1}\) + x2\(\sqrt{x_2}\) = \(\sqrt{x_1x_2}\)( \(\sqrt{x_1}\) + \(\sqrt{x_2}\) )

=> A2 = x1x2(x1 + 2\(\sqrt{x_1x_2}\) + x2)

=> A2 = 1(6 + 2) = 8

=> A = 2\(\sqrt{3}\)

b) bạn sai đề

2 tháng 4 2020

Đk pt có  2 nghiêm pb

\(\Delta=a^2-4>0\)

=>\(a^2>4\)

=>\(\orbr{\begin{cases}a>2\\a< -2\end{cases}}\)

theo Đly Vi-et, ta có x1+x2=-a

                                x1.x2=1

\(\frac{x_1^2}{x_2^2}+\frac{x_2^2}{x_1^2}=\frac{x_1^4+x_2^4}{x_1^2.x_2^2}=\frac{\left(x_1^2+x_2^2\right)^2-2x_1^2x_2^2}{1}=\left(\left(x_1+x_2\right)^2-2x_1x_2\right)^2-2=\left(a^2-2\right)^2-2\)

=>(a2-2)2-2 >7

=>(a2-2)2 >9

=>\(\orbr{\begin{cases}a^2-2>3\\a^2-2< -3\end{cases}=>\orbr{\begin{cases}a^2>5\\a^2< -1\left(loai\right)\end{cases}=>\orbr{\begin{cases}a>\sqrt{5}\\a< -\sqrt{5}\end{cases}}}\left(tmdk\right)}\)

21 tháng 3 2017

Câu c làm tương tự, mẫu số nhân ra và nhóm lại theo dạng: x1+x2 và x1.x2

21 tháng 3 2017

TOÁN HỌC

Toán lớp 2

Bài 1, bài 2, bài 3, bài 4, bài 5 tiết 92.luyện tập (trang 96 sgk)

Bài 1: Số ?,Bài 2: Tính (theo mẫu),Bài 3: Mỗi xe đạp có hai bánh xe. Hỏi 8 xe đạp có bao nhiêu bánh xe ? Bài 4: Viết số thích hợp vào ô trống (theo mẫu),Bài 5: Viết số thích hợp vào ô trống (theo mẫu):

  • Lý thuyết, bài 1, bài 2, bài 3 tiết 93.bảng nhân 3 (trang 97sgk)
  • Bài 1, bài 2, bài 3, bài 4, bài 5 tiết 94.luyện tập (trang 98 sgk)
  • Lý thuyết, bài 1, bài 2, bài 3 tiết 95. bảng nhân 4 (trang 99 sgk)
  • Bài 1, bài 2, bài 3, bài 4 tiết 96.luyện tập (trang 100 sgk)

Xem thêm: CHƯƠNG V: PHÉP NHÂN VÀ PHÉP CHIA

Bài 1: Số ?

Bài 2: Tính (theo mẫu)

2cm x 3 = 6cm                          2kg x 4 =

2cm x 5 =                                2kg x 6 = 

2dm x 8 =                                2kg x 9 =

Bài 3: Mỗi xe đạp có hai bánh xe. Hỏi 8 xe đạp có bao nhiêu bánh xe ?

Bài 4: Viết số thích hợp vào ô trống (theo mẫu):

Bài 5: Viết số thích hợp vào ô trống (theo mẫu):

Bài giải:

Bài 1:

Bài 2:

2cm x 3 = 6cm                                2kg x 4 = 8kg

2cm x 5 = 10cm                               2kg x 6 = 12kg 

2dm x 8 = 16cm                               2kg x 9 = 18kg

Bài 3: 

Số bánh xe của 78 xe đạp là:

2 x 8 = 16 (bánh xe)

Đáp số: 16 bánh xe.

Bài 4: Hướng dẫn: Điền lần lượt từ trái sang phải vào các ô trống còn lại là: 12, 18, 20, 14, 10, 16, 4.

Bài 5:

Hướng dẫn: Điền lần lượt từ trái sang phải vào các ô trống các số là: 10, 14, 18, 20, 4.

Bài viết liên quan

Các bài khác cùng chuyên mục

  • Bài 1, bài 2, bài 3, bài 4, bài 5 trang 180 sgk toán lớp 2 (12/01)
  • Bài 1, bài 2, bài 3, bài 4, bài 5 trang 180,181 sgk toán lớp 2 (12/01)
  • Bài 1, bài 2, bài 3, bài 4, bài 4 trang 177, 178 sgk toán lớp 2 (12/01)
  • Bài 1, bài 2, bài 3, bài 4 trang 178,179 sgk toán lớp 2 (12/01)
  • Bài 1, bài 2, bài 3, bài 4, bài 5 trang 181 sgk toán lớp 2 (12/01)



Xem thêm tại: http://loigiaihay.com/bai-1-bai-2-bai-3-bai-4-bai-5-tiet-92luyen-tap-c114a15865.html#ixzz4bgVSXCQi

NV
25 tháng 6 2020

\(\Delta'=1-\left(2m-1\right)=2-2m\ge0\Rightarrow m\le1\)

Để biểu thức đề bài xác định thì pt có 2 nghiệm dương

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2>0\\x_1x_2=2m-1>0\end{matrix}\right.\) \(\Rightarrow m>\frac{1}{2}\)

\(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}=2\Leftrightarrow\sqrt{x_1}+\sqrt{x_2}=2\sqrt{x_1x_2}\)

\(\Leftrightarrow x_1+x_2+2\sqrt{x_1x_2}=4x_1x_2\)

\(\Leftrightarrow2+2\sqrt{2m-1}=4\left(2m-1\right)\)

\(\Leftrightarrow2\left(2m-1\right)-\sqrt{2m-1}-1=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{2m-1}=1\\\sqrt{2m-1}=-\frac{1}{2}\left(l\right)\end{matrix}\right.\) \(\Rightarrow m=1\) (thỏa mãn)

21 tháng 4 2020

Theo hệ thức Vi ét ta có: x1 + x2 = \(-\frac{b}{a}\) = \(\frac{3}{2}\) Và x1.x2 = \(\frac{c}{a}=\frac{1}{2}\)

a) \(\) \(\frac{1}{\text{x1}}+\frac{1}{x2}=\frac{x1+x2}{x1.x2}=\frac{\frac{3}{2}}{\frac{1}{2}}=\frac{3}{1}=3\)

b)\(\frac{1-x1}{x1}+\frac{1-x2}{x2}=\frac{\left(1-x1\right)x2+\left(1-x2\right)x1}{x1.x2}=\frac{x2-x1.x2+x1-x1.x2}{x1.x2}=\frac{\left(x1+x2\right)-2x1.x2}{x1.x2}=\frac{\frac{3}{2}-\frac{2.1}{2}}{\frac{1}{2}}=\frac{\frac{1}{2}}{\frac{1}{2}}=1\)

c) \(\frac{x1}{x2+1}+\frac{x2}{x1+1}=\frac{x1^2+x1+x2^2+x2}{x1.x2+x1+x2+1}=\frac{\left(x1^2+2x1.x2+x2^2\right)+\left(x1+x2\right)-2x1.x2}{x1.x2+\left(x1+x2\right)+1}=\frac{\left(x1+x2\right)^2+\left(x1+x2\right)-2x1.x2}{x1.x2+\left(x1+x2\right)+1}=\frac{\frac{3^2}{2^2}+\frac{3}{2}-\frac{2.1}{2}}{\frac{1}{2}+\frac{3}{2}+1}=\frac{11}{12}\)

17 tháng 5 2018

\(mx^2-2\left(m+2\right)x+9=0\)

\(\left(a=m;b=-2\left(m+2\right);b'=-\left(m+2\right);c=9\right)\)

\(\Delta'=b'^2-ac\)

\(=\left[-\left(m+2\right)\right]^2-m.9\)

\(=m^2+2m2+2^2-9m\)

\(=m^2+4m+4-9m\)

\(=m^2-5m+4\)

\(=m^2-2m.2,5+6,25-2,25\)

\(=m^2-2m.2,5+2,5^2-2,25\)

\(=\left(m-2,5\right)^2-2,25\)    > 0  ; \(\forall m\)

vì phương trình luôn có nghiệm với mọi m , nên áp dụng hệ thức vi ét :

\(x_1+x_2=-\frac{b}{a}=\frac{2m+4}{m}\)

\(x_1.x_2=\frac{c}{a}=\frac{9}{m}\)

theo đề bài ta có : \(x_1-x_2=2\sqrt{10}\)

\(< =>\frac{2m+4}{m}-\frac{9}{m}=2\sqrt{10}\)

\(< =>\frac{2m+4}{m}-\frac{9}{m}=\frac{2\sqrt{10}m}{m}\)

\(< =>2m+4-9=2\sqrt{10}m\)

\(< =>2m-2\sqrt{10}m=9-4\)

\(< =>\left(2-2\sqrt{10}\right)m=5\)

\(< =>m=\frac{5}{2-2\sqrt{10}}\)

\(< =>m=\frac{-5-5\sqrt{10}}{18}\)

Vay : khi \(m=\frac{-5-5\sqrt{10}}{18}\)thì phương trình có 2 nghiệm thỏa \(x_1-x_2=2\sqrt{10}\)

OK CHÚC BẠN HỌC TỐT!!!!!!

18 tháng 5 2018

hình như bn làm sai rồi thì phải