Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,thay k=0 vào PT ta có
\(9x^2-25=0\)
\(\Leftrightarrow9\left(x^2-\left(\frac{5}{3}\right)^2\right)=0\)
\(\Leftrightarrow9\left(x-\frac{5}{3}\right)\left(x+\frac{5}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{5}{3}=0\\x+\frac{5}{3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-\frac{5}{3}\end{cases}}\)
b,thay x=1 vào PT ta có
\(9-25-k^2-2k=0\)
\(\Leftrightarrow k^2+2k+16=0\)
\(\Leftrightarrow\left(k+1\right)^2+15\ge0\)
Vậy ko có giá tri k thỏa mãn ĐK bài toán
`Answer:`
`a)` Thay `k=0` vào phương trình được:
`9x^2-25=0`
`<=>(3x-5)(3x+5)=0`
`<=>3x+5=0` hoặc `3x-5=0`
`<=>x=-5/3` hoặc `x=5/3`
`b)` Thay `x=-1` vào phương trình được:
`9-25-k^2+2k=0`
`<=>-k^2+2k-16=0`
`<=>-(k^2-2k+1)-15=0`
`<=>-(k-1)^2-15=0`
Mà `-(k-1)^2<=0∀k=>-(k-1)^2-15<0`
Vậy phương trình vô nghiệm.
bài 1 câu a,b tự làm nhé " thay k=-3 vào là ra
bài 1 câu c "
\(4x^2-25+k^2+4kx=0.\)
thay x=-2 vào ta được
\(16-25+k^2+-8k=0\)
\(-9+k^2-8k=0\Leftrightarrow k^2+k-9k-9=0\)
\(k\left(k+1\right)-9\left(k+1\right)=0\)
\(\left(k+1\right)\left(k-9\right)=0\)
vậy k=1 , 9 thì pt nhận x=-2
bài 2 xác đinh m ? đề ko có mờ đề phải là xác định a nếu là xác định a thì thay x=1 vào rồi tính là ra
bài 3 cũng éo hiểu xác định a ? a ở đâu
1 là phải xác đinh m , nếu là xác đinh m thì thay x=-2 vào rồi làm
. kết luận của chúa Pain đề như ###
a) ĐKXĐ \(\hept{\begin{cases}x-1\ne0\\x+1\ne0\\x\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x\ne1\\x\ne-1\\x\ne0\end{cases}}\)
b)\(\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right)\frac{x+2003}{x}\)
\(=\frac{\left(x+1\right)^2-\left(x-1\right)^2+x^2-4x-1}{\left(x-1\right).\left(x+1\right)}.\frac{x+2003}{x}\)
\(\frac{\left(x+1-x+1\right)\left(x+1+x-1\right)+x^2-4x-1}{\left(x-1\right)\left(x+1\right)}.\frac{x+2003}{x}\)
\(\frac{4x+x^2-4x-1}{\left(x-1\right)\left(x+1\right)}.\frac{x+2003}{x}\)
\(=\frac{x^2-1}{\left(x-1\right)\left(x+1\right)}.\frac{x+2003}{x}=\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.\frac{x+2003}{x}\)
\(=\frac{x+2003}{x}\)
c) Ta có \(K=\frac{x+2003}{x}\)
Để K nguyên thì x + 2003 ⋮ x
Ta có x ⋮ x => 2003 ⋮ x
=> x thuộc Ư(2003) = { 1; -1; 2003; -2003 }
Vậy khi x thuộc { 1; -1; 2003; -2003 } thì K nguyên
b1 \(\frac{x+a}{x+1}+\frac{x-2}{x}=2\)
ĐKXĐ \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)
\(\Leftrightarrow x\left(x+a\right)+\left(x-2\right)\left(x+1\right)=2x\left(x+1\right)\)
\(\Leftrightarrow x^2+ax+x^2-x-2=2x^2+2x\)
\(\Leftrightarrow ax-3x=2\)
\(\Leftrightarrow\left(a-3\right)x=2\)
để pt vô nghiệm thì a-3=0 <=>a=3 thì pt vô nghiệm
2,\(4x-k+4=kx+k\)
\(\Leftrightarrow4x-kx=2k-4\)
\(\Leftrightarrow\left(4-k\right)x=2k-4\)
để pt có nghiệm duy nhất thì 4-k khác 0 <=> k khác 4 thì pt có nghiệm duy nhất là\(\frac{2k-4}{4-k}\)
pt vô nghiệm thì 4-k=0 <=.>k=4
ĐKXĐ : \(\left\{{}\begin{matrix}x\ne1\\x\ne0\end{matrix}\right.\)
PT \(\Leftrightarrow\dfrac{2x}{x\left(x-1\right)}+\dfrac{k\left(x-1\right)}{x\left(x-1\right)}=\dfrac{k}{x\left(x-1\right)}\)
\(\Leftrightarrow2x+k\left(x-1\right)=k\)
\(\Leftrightarrow2x+kx-k=k\)
\(\Leftrightarrow2x+kx-2k=0\)
\(\Leftrightarrow x\left(k+2\right)=2k\)
- Để phương trình vô nghiệm :
\(\Leftrightarrow\left\{{}\begin{matrix}k+2=0\\2k\ne0\end{matrix}\right.\)
\(\Rightarrow k=-2\) ( TM )
Vậy k = - 2 thỏa mãn yêu cầu đề bài .
\(\dfrac{2}{x-1}+\dfrac{k}{x}=\dfrac{k}{x^2-x}\)
\(\Leftrightarrow\dfrac{2x+kx-k}{x^2-x}=\dfrac{k}{x^2-x}\)
\(\Leftrightarrow\left(2+k\right)x-2k=0\)
PT vô nghiệm khi và chỉ khi \(\left\{{}\begin{matrix}2+k=0\\2k\ne0\end{matrix}\right.\)=> k = -2
Vậy PT vô nghiệm khi k = -2
Tìm các giá trị của k để phương trình nghiệm âm:
\(\frac{1-x}{k-1}-\frac{x+1}{k+1}=\frac{2x}{1-k^2}\)