K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 1 2021

\(m^2x-2m+2mx+2-3x=0\)

\(\Leftrightarrow\left(m^2+2m-3\right)x=2\left(m-1\right)\)

\(\Leftrightarrow\left(m-1\right)\left(m+3\right)x=2\left(m-1\right)\)

- Với \(m=1\) pt có vô số nghiệm (ktm)

- Với \(m\ne1\Rightarrow x=\dfrac{2}{m+3}>0\Rightarrow m>-3\)

Vậy để pt có nghiệm dương duy nhất \(\Leftrightarrow\left\{{}\begin{matrix}m>-3\\m\ne1\end{matrix}\right.\)

19 tháng 3 2021

a) dễ rồi bạn chỉ việc bế x = 1/2 vào tìm m bình thường

b) mx - 2 + m = 3x

<=> ( m - 3 )x + m - 2 = 0

Để pt có nghiệm duy nhất thì m - 3 ≠ 0 <=> m ≠ 3

Khi đó nghiệm duy nhất là x = -m+2/m-3

16 tháng 5 2022

\(\left(2x+m\right)\left(x-1\right)-2x^2+mx-2=0\)

\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx-2=0\)

\(\Leftrightarrow-2x+2mx-m-2=0\)

\(\Leftrightarrow2x\left(m-1\right)=m+2\)

\(\Leftrightarrow x=\dfrac{m+2}{2\left(m-1\right)}\)

Để phương trình có nghiệm là 1 số không âm thì:

\(\left\{{}\begin{matrix}m\ne1\\\dfrac{m+2}{2\left(m-1\right)}\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m+2\ge0\\2\left(m-1\right)\ge0\end{matrix}\right.hay\left\{{}\begin{matrix}m+2\le0\\2\left(m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ge-2\\m>1\end{matrix}\right.hay\left\{{}\begin{matrix}m\le-2\\m< 1\end{matrix}\right.\)

\(\Leftrightarrow m>1\) hay \(m\le-2\).

-Vậy \(m>1\) hay \(m\le-2\) thì phương trình có nghiệm là 1 số không âm.

a) Thay m=2 vào phương trình, ta được:

\(2^2+4\cdot3-3=2^2+x\)

\(\Leftrightarrow x+4=4+12-3\)

\(\Leftrightarrow x+4=13\)

hay x=9

Vậy: Khi m=2 thì x=9

AH
Akai Haruma
Giáo viên
4 tháng 4 2021

Lời giải:

Không biết bạn có viết sai đề không...........
PT $\Leftrightarrow x=4m-3$

a) Với $m=2$ thì $x=4.2-3=5$

Vậy $x=5$

b) Tương ứng với mỗi $m\in\mathbb{R}$ PT đều có duy nhất 1 nghiệm $x=4m-3$

c) Tương ứng với mỗi $m\in\mathbb{Z}$ PT đều có nghiệm nguyên $x=4m-3$

 

21 tháng 2 2020

a, mx - 2x + 3 = 0

m = -4

<=> -4x - 2x + 3 = 0

<=> -6x = -3

<=> x = 1/2

b, mx - 2x + 3 = 0 

x = 2

<=> 2m - 2.2 + 3 =0

<=> 2m - 1 = 0

<=>  m = 1/2

18 tháng 3 2022

à bài này a nhớ (hay mất điểm ở bài này) ;v

gòi a làm hộ e hong đây .-.

Mai nộp gòi mà chưa lmj :<

30 tháng 1 2022
  • puvi9176
  • 16/01/2021

mx−2+m=3xmx−2+m=3x

a) Phương trình nhận x=12x=12 làm nghiệm

→m⋅12−2+m=3⋅12→m⋅12−2+m=3⋅12

→32m=72→32m=72

→m=73→m=73

b) mx−2+m=3xmx−2+m=3x

→(m−3)x=2−m→(m−3)x=2−m

Phương trình có nghiệm duy nhất

→m−3≠0→m−3≠0

→m≠3→m≠3

Khi đó:

30 tháng 1 2022

THAM KHẢO

2(m-1)x+3=2m-5

=>x(2m-2)=2m-5-3=2m-8

a: (1) là phương trình bậc nhất một ẩn thì m-1<>0

=>m<>1

b: Để (1) vô nghiệm thì m-1=0 và 2m-8<>0

=>m=1

c: Để (1) có nghiệm duy nhất thì m-1<>0

=>m<>1

d: Để (1) có vô số nghiệm thì 2m-2=0 và 2m-8=0

=>Ko có m thỏa mãn

e: 2x+5=3(x+2)-1

=>3x+6-1=2x+5

=>x=0

Khi x=0 thì (1) sẽ là 2m-8=0

=>m=4

10 tháng 5 2021

\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)

\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx+m-2=0\)

\(\Leftrightarrow\left(2m-2\right)x-2=0\)

\(\Leftrightarrow\left(2m-2\right)x=2\)

\(\Leftrightarrow x=\dfrac{2}{2m-2}\)

Để phương trình đã cho có nghiệm âm thì:

\(\dfrac{2}{2m-2}< 0\)

\(\Leftrightarrow2m-2< 0\)

\(\Leftrightarrow2m< 2\)

\(\Leftrightarrow m< 1\)

Vậy \(m< 1\) thì phương trình đã cho có nghiệm âm.

10 tháng 5 2021

\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)

\(\Leftrightarrow2x^2+mx-2x-m-2x^2+mx+m-2=0\)

\(\Leftrightarrow\left(2m-2\right)x-2=0\left(1\right)\)

+) Nếu \(m=1\)\(\rightarrow\left(1\right)\Leftrightarrow0x-2=0\left(V_{n_o}\right)\)

+) Nếu \(m\ne1\rightarrow x=\dfrac{2}{2m-2}\)

Để \(x< 0\Leftrightarrow\dfrac{2}{2m-2}< 0\) mà \(2>0\Leftrightarrow2m-2< 0\Leftrightarrow m< 1\)