Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo vi-et thì ta có:
\(\hept{\begin{cases}x_1+x_2=\frac{3a-1}{2}\\x_1x_2=-1\end{cases}}\)
Từ đây ta có:
\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=\left(\frac{3a-1}{2}\right)^2-4.1=\left(\frac{3a-1}{2}\right)^2-4\)
Theo đề bài thì
\(P=\frac{3}{2}.\left(x_1-x_2\right)^2+2\left(\frac{x_1-x_2}{2}+\frac{1}{x_1}-\frac{1}{x_2}\right)^2\)
\(=\frac{3}{2}.\left(x_1-x_2\right)^2+2.\left(x_1-x_2\right)^2\left(\frac{1}{2}-\frac{1}{x_1x_2}\right)^2\)
\(=\left(x_1-x_2\right)^2\left(\frac{3}{2}+2.\left(\frac{1}{2}-\frac{1}{x_1x_2}\right)^2\right)\)
\(=\left(\left(\frac{3a-1}{2}\right)^2-4\right)\left(\frac{3}{2}+2.\left(\frac{1}{2}+1\right)^2\right)\)
\(=6\left(\left(\frac{3a-1}{2}\right)^2-4\right)\ge6.4=24\)
Dấu = xảy ra khi \(a=\frac{1}{3}\)
\(\Delta'=m^2-2\left(m^2-2\right)=4-m^2\ge0\Rightarrow-2\le m\le2\)
Khi đó ta có \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=\frac{m^2-2}{2}\end{matrix}\right.\)
\(A=\frac{2x_1x_2+3}{x_1^2+x_2^2+2x_1x_2+2}=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\frac{m^2+1}{m^2+2}=1-\frac{1}{m^2+2}\)
Do \(0\le m^2\le4\Rightarrow\frac{1}{6}\le\frac{1}{m^2+2}\le\frac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}A_{min}=1-\frac{1}{2}=\frac{1}{2}\Rightarrow m=0\\A_{max}=1-\frac{1}{6}=\frac{5}{6}\Rightarrow m=\pm2\end{matrix}\right.\)
- Phương trình : \(x^2-mx-1=0\) có \(\Delta^'=m^2+4\ge4\)
nên phương trình luôn có 2 nghiệm phân biệt \(x_1;x_2\)theo viet ta có
\(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=-1\end{cases}}\) do tích hai nghiệm là một số âm nên hai nghiệm luôn trái dấu
- câu b ko có yêu cầu đề bài ko làm đc
Câu c làm tương tự, mẫu số nhân ra và nhóm lại theo dạng: x1+x2 và x1.x2
TOÁN HỌC
Toán lớp 2
Bài 1, bài 2, bài 3, bài 4, bài 5 tiết 92.luyện tập (trang 96 sgk)
Bài 1: Số ?,Bài 2: Tính (theo mẫu),Bài 3: Mỗi xe đạp có hai bánh xe. Hỏi 8 xe đạp có bao nhiêu bánh xe ? Bài 4: Viết số thích hợp vào ô trống (theo mẫu),Bài 5: Viết số thích hợp vào ô trống (theo mẫu):
- Lý thuyết, bài 1, bài 2, bài 3 tiết 93.bảng nhân 3 (trang 97sgk)
- Bài 1, bài 2, bài 3, bài 4, bài 5 tiết 94.luyện tập (trang 98 sgk)
- Lý thuyết, bài 1, bài 2, bài 3 tiết 95. bảng nhân 4 (trang 99 sgk)
- Bài 1, bài 2, bài 3, bài 4 tiết 96.luyện tập (trang 100 sgk)
Xem thêm: CHƯƠNG V: PHÉP NHÂN VÀ PHÉP CHIA
Bài 1: Số ?
Bài 2: Tính (theo mẫu)
2cm x 3 = 6cm 2kg x 4 =
2cm x 5 = 2kg x 6 =
2dm x 8 = 2kg x 9 =
Bài 3: Mỗi xe đạp có hai bánh xe. Hỏi 8 xe đạp có bao nhiêu bánh xe ?
Bài 4: Viết số thích hợp vào ô trống (theo mẫu):
Bài 5: Viết số thích hợp vào ô trống (theo mẫu):
Bài giải:
Bài 1:
Bài 2:
2cm x 3 = 6cm 2kg x 4 = 8kg
2cm x 5 = 10cm 2kg x 6 = 12kg
2dm x 8 = 16cm 2kg x 9 = 18kg
Bài 3:
Số bánh xe của 78 xe đạp là:
2 x 8 = 16 (bánh xe)
Đáp số: 16 bánh xe.
Bài 4: Hướng dẫn: Điền lần lượt từ trái sang phải vào các ô trống còn lại là: 12, 18, 20, 14, 10, 16, 4.
Bài 5:
Hướng dẫn: Điền lần lượt từ trái sang phải vào các ô trống các số là: 10, 14, 18, 20, 4.
Bài viết liên quan
Các bài khác cùng chuyên mục
- Bài 1, bài 2, bài 3, bài 4, bài 5 trang 180 sgk toán lớp 2 (12/01)
- Bài 1, bài 2, bài 3, bài 4, bài 5 trang 180,181 sgk toán lớp 2 (12/01)
- Bài 1, bài 2, bài 3, bài 4, bài 4 trang 177, 178 sgk toán lớp 2 (12/01)
- Bài 1, bài 2, bài 3, bài 4 trang 178,179 sgk toán lớp 2 (12/01)
- Bài 1, bài 2, bài 3, bài 4, bài 5 trang 181 sgk toán lớp 2 (12/01)
Xem thêm tại: http://loigiaihay.com/bai-1-bai-2-bai-3-bai-4-bai-5-tiet-92luyen-tap-c114a15865.html#ixzz4bgVSXCQi
Ta có để pt có 2 nghiệm phân biệt thì:
\(\Delta'=\left(m-2\right)^2-\left(m^2-2m\right)>0\)
\(\Leftrightarrow m< 2\)
Theo vi-et ta có
\(\hept{\begin{cases}x_1+x_2=4-2m\\x_1x_2=m^2-2m\end{cases}}\)
Theo đề ta có: \(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1x_2}=\frac{1}{15m}\)
\(\Leftrightarrow\frac{2}{\left(x_1+x_2\right)^2-4x_1x_2}-\frac{1}{x_1x_2}=\frac{1}{5m}\)
\(\Leftrightarrow\frac{2}{\left(4-2m\right)^2-4\left(m^2-2m\right)}-\frac{1}{m^2-2m}=\frac{1}{15m}\)
\(\Leftrightarrow\frac{1}{8-4m}-\frac{1}{m^2-2m}=\frac{1}{15m}\)
\(\Leftrightarrow19m+52=0\)
\(\Leftrightarrow m=\frac{52}{19}\)(loại)
Không có m thỏa cái trên
PS: Không biết có nhầm chỗ nào không. Bạn kiểm tra hộ m nhé
a, m=2
=> \(x^2-6x+8=0\)=> \(\orbr{\begin{cases}x=2\\x=4\end{cases}}\)
b, Để phương trình có 2 nghiệm
thì \(\Delta'=\left(m+1\right)^2-m^2-4=2m-3\ge0\)=> \(m\ge\frac{3}{2}\)
Theo viet ta có
\(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+4\end{cases}}\)
Vì x2 là nghiệm của phương trình
nên \(2\left(m+1\right)x_2=x^2_2+m^2+4\)
Khi đó
\(\left(x_1^2+x^2_2\right)+m^2+4\le3m^2+16\)
=> \(\left(x_1+x_2\right)^2-2x_1x_2\le2m^2+12\)
=> \(4\left(m+1\right)^2-2\left(m^2+4\right)\le2m^2+12\)
=.>\(8m\le16\)=>\(m\le2\)
Vậy \(m\le2\)
\(\Delta=m^2-4m+4=\left(m-2\right)^2\ge0\Rightarrow\) pt luôn có nghiệm
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)
\(P=\frac{2x_1x_2+3}{x_1^2+2x_1x_2+x_2^2+2}=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\frac{2\left(m-1\right)+3}{m^2+2}=\frac{2m+1}{m^2+2}\)
c/
\(P=\frac{2m+1}{m^2+2}\Leftrightarrow Pm^2+2P=2m+1\)
\(\Leftrightarrow Pm^2-2m+2P-1=0\) (1)
Do pt có nghiệm với mọi m nên (1) phải có nghiệm m với tham số P
\(\Rightarrow\Delta'=1-P\left(2P-1\right)\ge0\Leftrightarrow-2P^2+P+1\ge0\)
\(\Rightarrow-\frac{1}{2}\le P\le1\Rightarrow\left\{{}\begin{matrix}P_{mim}=-\frac{1}{2}\\P_{max}=1\end{matrix}\right.\)
\(\Delta'=m^2+m+5=\left(m+\frac{1}{2}\right)^2+\frac{19}{4}>0\) pt luôn có 2 nghiệm pb
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+1\right)\\x_1x_2=m-4\end{matrix}\right.\)
\(x_1^2+x_2^2+2x_1x_2+x_1x_2=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^2+x_1x_2=0\)
\(\Leftrightarrow4m^2+8m+4+m-4=0\)
\(\Leftrightarrow4m^2+9m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-\frac{9}{4}\end{matrix}\right.\)
a/ C1: Do ac=2.(-2)<0 => pt luôn có 2 ng phân biệt
C2: \(\Delta=\left(-3m\right)^2-4.2.\left(-2\right)\)
\(=9m^2+16\ge16\)
=> pt luôn có 2 ng phân biệt
b/ Có \(\hept{\begin{cases}x_1+x_2=\frac{3m}{2}\\x_1.x_2=-1\end{cases}}\) (vi-et)
\(\Rightarrow x+x=\left(x+x\right)^2-2xx\)
\(=\left(\frac{3m}{2}\right)^2-2.\left(-1\right)\)
\(=\frac{9m^2}{4}+2\ge2\)
Vậy min=2 <=> m=0
c\(\frac{1}{x_1^3}+\frac{1}{x_2^3}=\frac{x^3_1+x^3_2}{x^3_1x^3_2}\)
= \(\frac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{x_1^3x_2^3}\)
\(=\frac{\left(\frac{3m}{2}\right)^2-3\left(-1\right)\left(\frac{3m}{2}\right)}{\left(-1\right)^3}\)
\(=\frac{\frac{9m^2}{4}+\frac{9m}{2}}{-1}\)
\(=\frac{\frac{9m^2}{4}+\frac{18m}{4}}{-1}\)
\(=\frac{9m^2+18m}{-4}\)