K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 3 2020

\(\Leftrightarrow\left(2m-4\right)x=3\)

Để pt có nghiệm \(\Leftrightarrow2m-4\ne0\Rightarrow m\ne2\)

Để pt vô nghiệm \(\Leftrightarrow2m-4=0\Leftrightarrow m=2\)

9 tháng 3 2020

Lần sau ghi có chủ ngữ, vị ngữ vào, ng ta mới hiểu, mới mở đầu câu đã ghi dấu \(\Leftrightarrow\) ai mà mà hiểu

13 tháng 12 2019

Câu c) mình sai rồi nên hãy giúp mình câu a và b thôi 

Bài 2: 

Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0

hay -2<m<2

1 tháng 8 2021

(m-1)x2-2mx+m-2=0(m\(\ne1\) )

\(\Delta\)'=\(m^2-\left(m-2\right)\left(m-1\right)\)

   =\(m^2-m^2+m+2m-2\)

 =3m-2

Để pt có nghiệm 2 ngiệm trái dấu thì \(\Delta\) =3m-2>0\(\Leftrightarrow m>\dfrac{2}{3}\)

Áp dụng hệ thức Viet, ta có 

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m}{m-1}\\x_1.x_2=\dfrac{m-2}{m-1}\end{matrix}\right.\)

Để PT có 2 nghiệm trái dấu thì x1x2<0\(\Leftrightarrow\dfrac{m-2}{m-1}< 0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m-2< 0\\m-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}m-2>0\\m-1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}m< 2\\m>1\end{matrix}\right.\\\left\{{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow1< m< 2\)

Vậy 1<m<2 thì pt có 2 nghiệm trái dấu 

câu b

.Với m=1\(\Rightarrow-2x-1=0\Leftrightarrow x=\dfrac{-1}{2}\left(l\right)\)

.Với \(m\ne1\)

\(\Rightarrow\Delta\)'=3m-2\(\ge0\Leftrightarrow m\ge\dfrac{2}{3}\)

 

 

1 tháng 8 2021

câu b là 2 nghiệm dương phân biệt nên △>0 mà

11 tháng 11 2021

\(1,\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(-3\right)^2-4\left(-2\right)\left(-m+1\right)>0\\x_1+x_2=\dfrac{3}{-2}< 0\\x_1x_2=\dfrac{-m+1}{-2}>0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}17-8m>0\\-m+1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{17}{8}\\m>1\end{matrix}\right.\Leftrightarrow1< m< \dfrac{17}{8}\)

\(2,\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(-4\right)^2-4\left(-3\right)\left(-2m+1\right)\ge0\\x_1+x_2=\dfrac{4}{-3}< 0\\x_1x_2=\dfrac{-2m+1}{-3}>0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}28-24m\ge0\\-2m+1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\le\dfrac{7}{6}\\m>\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\dfrac{1}{2}< m\le\dfrac{7}{6}\)

11 tháng 11 2021

Giúp em câu e bài 1,bài 2,3 với 

9 tháng 3 2021

có thể ghi đề rõ hơn được không

 

19 tháng 12 2020

a, Phương trình có hai nghiệm khi 

\(\Delta'=m^2-2\left(m^2-2\right)=-m^2+4\ge0\Leftrightarrow-2\le m\le2\)

b, Theo định lí Viet \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=\dfrac{m^2-2}{2}\end{matrix}\right.\)

\(A=\left|2x_1x_2+x_1+x_2-4\right|\)

\(=\left|m^2-2-m-4\right|\)

\(=\left|\left(m-\dfrac{1}{2}\right)^2-\dfrac{25}{4}\right|\)

\(=\left|-\left(m-\dfrac{1}{2}\right)^2+\dfrac{25}{4}\right|\le\dfrac{25}{4}\)

\(maxA=\dfrac{25}{4}\Leftrightarrow m=\dfrac{1}{2}\)

14 tháng 11 2017

Chọn D

Đặt  t= x-1 hay x= t+1, thay vào pt đã cho ta được pt:

t2+ 2(1-m) t+ m2- 3 m+2= 0  (2)

Để pt (1) có nghiệm x 1 khi và chỉ khi pt (2) có nghiệm t 0 

TH1: Pt(2) có nghiệm : t1≤ ≤ t2

Khi đó; P= t1.t2 0 hay m2- 3m+ 2 0 hay 1≤  2

TH2: pt (2) có nghiệm

Kết luận: với 1 m 2 thì pt (1) có nghiệm x1

26 tháng 9 2017

Chọn C

Đặt  t= x-1 hay x= t+1, thay vào pt đã cho ta được pt:

t2+ 2(1-m) t+ m2- 3 m+2= 0  (2)

pt (1) có 2 nghiệm thỏa  mãn x1< 1< x2 khi và chỉ khi  pt (2) có 2 nghiệm:  t1< 0 < t2  suy ra P < 0

Hay m2- 3m+ 2 < 0

Do đó:  1 <  m < 2

Kết luận: với 1< m< 2 thì pt (1) có hai nghiệm  x1< 1< x2

4 tháng 12 2019

Chọn D

Đặt  t= x-1 hay x= t+1, thay vào pt đã cho ta được pt:

t2+ 2(1-m) t+ m2- 3 m+2= 0  (2)

pt (1) có 2 nghiệm thỏa  x1< x2< 1 khi  và chỉ khi  pt (2) có 2 nghiệm:

(vô nghiệm)

Kết luận: không tồn tại m thỏa mãn bài toán.