\(\frac{6n-1}{3n+2}\)

Tìm n thuộc Z để A có GTNN

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2017

Ta có :

\(A=\frac{6n-1}{3n+2}\)

\(A=\frac{6n+4-5}{3n+2}\)

\(A=\frac{6n+4}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)

Mà để \(2-\frac{5}{3n+2}\)có giá trị nhỏ nhất

\(\Rightarrow\frac{5}{3n+2}\)phải có giá trị lớn nhất

Mà để \(\frac{5}{3n+2}\)có giá trị lớn nhất thì \(3n+2\)phải là số nguyên âm nhỏ nhất và là ước của 5

\(\Rightarrow3n+2=-1\)để \(\frac{5}{3n+2}\) bằng -5

\(\Rightarrow3n=-3\)

\(\Rightarrow n=-1\)

Vậy n=-1 thì A có giá trị nhỏ nhất

16 tháng 9 2017

co boai tao biet

16 tháng 3 2019

a) Để A có giá trị nguyên

suy ra (6n - 1) chia hết cho (3n + 2) 

Vì (3n + 2) chia hết cho (3n + 2) suy ra 2(3n + 2) chia hết cho (3n + 2) hay (6n + 4) chia hết cho (3n + 2)

suy ra [(6n - 1) - (6n + 4)] chia hết cho (3n + 2)

            (6n - 1 - 6n - 4) chia hết cho (3n + 2)

                        5           chia hết cho (3n + 2)

hay 3n + 2 thuộc Ư(5). Mà Ư(5) thuộc {1; -1; 5; -5}

Ta có bảng sau:

3n + 21-15-5

3n 

-1-33-7
n-1/3 ko thuộc Z (loại)-11

-7/3 ko thuộc Z (loại)

                    Vậy n = 1 hoặc n = -1

b) Ta có: A=6n - 1/3n + 2 = 6n + 4 - 5/3n + 2 = 2(3n + 2) - 5/3n + 2 = 2 - 5/3n + 2

Để A min suy ra 5/3n + 2 max

Vì 5 ko thay đổi suy ra 3n + 2 min và 5/3n + 2 là số âm nhỏ nhất

Suy ra 3n + 2 là số âm lớn nhất nên 3n + 2 = -1

                                                              3n   = -1 - 2 = -3

                                                                n   = -3 : 3 = -1

                                  Vậy min A = -7 tại n = -1 

Nhớ k mình đúng nhé!!!Thanks các bạn nhiều

4 tháng 3 2018

mình cần gấp nhé

4 tháng 3 2018

\(a)\) Ta có : 

\(A=\frac{6n-2}{3n+1}=\frac{6n+2-4}{3n+1}=\frac{2\left(3n+1\right)-4}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{4}{3n+1}=2+\frac{4}{3n+1}\)

Để A là số nguyên thì \(\frac{4}{3n+1}\) phải là số nguyên \(\Rightarrow\)\(4⋮\left(3n+1\right)\)\(\Rightarrow\)\(\left(3n+1\right)\inƯ\left(4\right)\)

Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Do đó : 

\(3n+1\)\(1\)\(-1\)\(2\)\(-2\)\(4\)\(-4\)
\(n\)\(0\)\(\frac{-2}{3}\)\(\frac{1}{3}\)\(-1\)\(1\)\(\frac{-5}{3}\)

Lại có  \(n\inℤ\) nên \(n\in\left\{-1;0;1\right\}\)

Câu b) là tương tự rồi tính n ra, sau đó thấy n nào giống với câu a) rồi trả lời  

1 tháng 5 2015

Phần a dễ , tớ làm sau.Để tớ chơi phần b {}

Phàn a) dễ oy , tự lm nhé !

b) Ta có : \(A=\frac{6n-1}{3n+2}=\frac{2\left(3n+2\right)-5}{3n+2}=2-\frac{5}{3n+2}\)

Để \(A_{min}\Leftrightarrow\frac{5}{3n+2}max\)

Xét 3n+2>0 =>3n>-2=>n>\(\frac{-2}{3}\)=> n >hoặc = 0(vì n \(\in\)Z )=>\(\frac{5}{3n+2}\)>0 (1)

Xét 3n+2<0 => 3n<-2 =>n<\(\frac{-2}{3}\)=>\(\frac{5}{3n+2}\)<0 (2)

từ (1) và (2) và do \(\frac{5}{3n+2}\)max => ta chọn trường hợp (1)

p/s \(\frac{5}{3n+2}\)dương có tử số dương ko đổi nên A bé nhất khi mẫu số bé nhất \(\Leftrightarrow\)n nhỏ nhất \(\Leftrightarrow\)n=0

Vậy \(A_{min}=\frac{-1}{2}\Leftrightarrow n=0\)

17 tháng 9 2017

Ta có: \(A=\frac{6n-1}{3n+2}=\frac{2\left(3n+2\right)-5}{3n+2}=2-\frac{5}{3n+2}\)(Tách bớt phần nguyên)

=> Để A có GTNN thì \(\frac{5}{3n+2}\)phải đạt giá trị lớn nhất.

=> \(3n+2\)có GTNN => n có GTNN. Mà \(n\in N\Rightarrow n=0\)

Thay n=0 vào A; ta được:

\(A=2-\frac{5}{3.0+2}=2-\frac{5}{2}=-\frac{1}{2}\).

Vậy A có GTNN là -1/2 khi n=0.

14 tháng 5 2018

a)\(A\inℤ\)

\(\Leftrightarrow6n-1⋮3n+2\)

\(\Leftrightarrow3n+2⋮3n+2\)

\(\Leftrightarrow6n+4⋮3n+2\)

\(\Leftrightarrow6n+4-\left(6n-1\right)⋮3n+2\)

\(\Leftrightarrow6n+4-6n+1⋮3n+2\)

\(\Leftrightarrow5⋮3n+2\)

\(\Rightarrow3n+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Lập bảng

3n+2-5-115
n\(-\frac{7}{3}\)-1\(-\frac{1}{3}\)1
nhận xétloạichọnloạichọn
14 tháng 5 2018

b)Gọi d là ƯCLN 6n-1 và 3n+2

<=>6n-1\(⋮\)d    3n+2\(⋮\)d

<=>________   6n+4\(⋮\)d

<=>6n+4-6n+1\(⋮\)d

<=>5\(⋮\)d

Lập bảng(như câu a) 

=>\(n\in\left\{\pm1\right\}\)để A là ps tối giản

c)(chịu)

19 tháng 3 2018

\(b)\) Ta có : 

\(A=\frac{6n-1}{3n+2}=2-\frac{5}{3n+2}\) ( câu a mình đã phân tích rồi nên khỏi phân tích lại ) 

Để A đạt GTNN thì \(\frac{5}{3n+2}\) phải đạt GTLN hay nói cách khác \(3n+2>0\) và đạt GTNN

\(\Rightarrow\)\(3n+2=1\)

\(\Rightarrow\)\(3n=-1\)

\(\Rightarrow\)\(n=\frac{-1}{3}\) ( loại vì \(n\inℤ\) ) 

\(\Rightarrow\)\(3n+2=2\)

\(\Rightarrow\)\(3n=0\)

\(\Rightarrow\)\(n=0\)

Suy ra : \(A=2-\frac{5}{3n+2}=2-\frac{5}{3.0+2}=2-\frac{5}{2}=\frac{-1}{2}\)

Vậy \(A_{min}=\frac{-1}{3}\) khi \(n=0\)

Chúc bạn học tốt ~ 

19 tháng 3 2018

\(a)\) Ta có : 

\(\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=\frac{6n+4}{3n+2}-\frac{5}{3n+2}=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)

Để \(A\inℤ\)  thì \(\frac{5}{3n+2}\inℤ\)\(\Rightarrow\)\(5⋮\left(3n+2\right)\)\(\Rightarrow\)\(\left(3n+2\right)\inƯ\left(5\right)\)

Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)

Suy ra : 

\(3n+2\)\(1\)\(-1\)\(5\)\(-5\)
\(n\)\(\frac{-1}{3}\)\(-1\)\(1\)\(\frac{-7}{3}\)

Mà \(n\inℤ\) nên \(n\in\left\{-1;1\right\}\)

Vậy \(n=1\) hoặc \(n=-1\)

Chúc bạn học tốt ~