Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DKXD cua phan thuc \(n\ne-9\)
\(\frac{7n-1}{n+9}=\frac{7n+63-64}{n+9}=\frac{7\left(n+9\right)-64}{n+9}=\frac{7\left(n+9\right)}{n+9}-\frac{64}{n+9}\)\(=7-\frac{64}{n+9}\)
De phan thuc dat gia tri nguyen => \(\frac{64}{n+9}\)nguyen
<=> \(64⋮n+9\)<=> \(n+9\in U\left(64\right)\)
<=> \(n+9\in\left\{-64;-32;-16;-8;-4;-2;-1;1;2;4;8;16;32;64\right\}\)
=> \(n\in\left\{-73;-41;-25;-17;-13;-11;-10;-7;-5;-1;7;23;55\right\}\)
Mong bạn k cho mk !!!
a) \(\frac{4}{n+1}\)
=> 4 \(⋮\)n + 1
=> n + 1 \(\in\)Ư( 4 ) = { 1 ; -1 ; 2 ; -2 ; 4 ; -4 }
=> n \(\in\){ 0 ; -2 ; 1 ; -3 ; 3 ; -5 }
b) \(\frac{-27}{2n-3}\)
=> -27 \(⋮\)2n - 3
=> 2n - 3\(\in\){ 1 ; -1 ; 3 ; -3 ; 9 ; -9 ; 27 ; -27 }
=> Lập bảng :
2n - 3 | 1 | -1 | 3 | -3 | 9 | -9 | 27 | -27 |
2n | 4 | 2 | 6 | 0 | 12 | -6 | 30 | -24 |
n | 2 | 1 | 3 | 0 | 6 | -3 | 15 | -12 |
Vậy n \(\in\){ -12 ; -3 ; 0 ; 1 ; 2 ; 3 ; 6 ; 15 }
c)\(\frac{n+3}{n-2}\)
có : n + 3 \(⋮\)n - 2
n - 2 \(⋮\)n - 2
=> ( n + 3 ) - ( n - 2 ) \(⋮\)( n - 2 )
=> n + 3 - n + 2 \(⋮\)n - 2
5 \(⋮\)n - 2
=> n - 2 \(\in\)Ư( 5 ) = { 1 ; -1 ; 5 ; -5 }
=> n \(\in\){ 3 ; 1 ; 7 ; -3 }
\(a.\) Để \(\frac{4}{n+1}\in Z\) thì \(4⋮n+1\)
\(\Rightarrow n+1\inƯ\left(4\right)=\left\{-1;1;2;-2;4;-4\right\}\)
\(\Rightarrow n\in\left\{-2;0;1;-3;3;-5\right\}\)
\(b.\)Để \(\frac{-27}{2n-3}\in Z\) thì \(-27⋮2n-3\)
Đến đây bn tự nghĩ típ nha.
\(c.\)\(\Rightarrow n+3⋮n-2\)
\(\Rightarrow\left(n-2\right)+5⋮n-2\)
\(\Rightarrow5⋮n-2\)
Tự làm típ nha
Mk làm mẫu cho 1 phần rùi các câu còn lại làm tương tự nhé
a) \(\frac{3n-2}{n-3}=3+\frac{7}{n-3}\)
Để \(\frac{3n-2}{n-3}\)nguyên thì \(\frac{7}{n-3}\)nguyên
hay \(n-3\)\(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta lập bảng sau:
\(n-3\) \(-7\) \(-1\) \(1\) \(7\)
\(n\) \(-4\) \(2\) \(4\) \(10\)
Vậy....
\(\frac{1}{n+1}+\frac{n}{n+1}+\frac{2n+1}{n+1}\)\(=\frac{1+n+2n+1}{n+1}\)\(=\frac{3n+2}{n+1}\)
\(\frac{8n-9}{2n+5}=\frac{8n+20-20-9}{2n+5}=\frac{8n+20-29}{2n+5}=\frac{8n+20}{2n+5}+\frac{-29}{2n+5}\)
\(Ư\left(-29\right)=\left(-29;-1;1;29\right)\)
\(2n+5=-29\) \(n=-17\)
\(2n+5=-1\) \(n=-3\)
\(2n+5=1\) \(n=-2\)
\(2n+5=29\) \(n=12\)
\(n=\left(-17;-3;-2;12\right)\)
a, Gọi ƯCLN 2n + 5 ; n + 3 = d \(\left(d\inℕ^∗\right)\)
Ta có : \(2n+5⋮d\)(1)
\(n+3⋮d\Rightarrow2n+6⋮d\)(2)
Lấy (2) - (1) ta được : \(2n+6-2n-5⋮d\Rightarrow1⋮d\Rightarrow d=1\)
b, Để \(B=\frac{2n}{n+3}+\frac{5}{n+3}=\frac{2n+5}{n+3}\)nhận giá trị nguyên khi
\(2n+5⋮n+3\Leftrightarrow2\left(n+3\right)-1⋮n+3\)
\(\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)
n + 3 | 1 | -1 |
n | -2 | -4 |
\(\frac{8n-3}{2n+1}=\frac{13}{5}\)
\(\Rightarrow\left(8n-3\right)\cdot5=\left(2n+1\right)\cdot13\)
\(\Rightarrow40n-15=26n+13\)
\(\Rightarrow40n-26n=13+15\)
\(\Rightarrow14n=28\)
\(\Rightarrow n=28\div2\)
\(\Rightarrow n=14\)
ta có : 8n-3/2n+1=13/5
(8n-3).5=(2n+1).13
40n-15=26n+13
40n-26n=15+23
14n=28
suy ra n=28:14=2
vậy n=2