Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{4n+1}{2n+3}=\frac{4n+6}{2n+3}-\frac{5}{2n+3}=\frac{2\left(2n+3\right)}{2n+3}-\frac{5}{2n+3}=2-\frac{5}{2n+3}\)
a) A nguyên khi \(\frac{5}{2n+3}\) nguyên <=> 5 chia hết cho 2n+3
<=>\(2n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
<=>\(2n\in\left\{-8;-4;-2;2\right\}\)
<=>\(n\in\left\{-4;-2;-1;1\right\}\)
b) A lớn nhất khi \(2-\frac{5}{2n+3}\)lớn nhất <=>\(\frac{5}{2n+3}\) nhỏ nhất <=> 2n+3 lớn nhất < 0 mà n nguyên
<=> 2n+3=-1 <=> n=-2
\(maxA=2-\frac{5}{2n+3}=2-\frac{5}{2\left(-2\right)+3}=2-\frac{5}{-1}=2-\left(-5\right)=7\) tại n=-2
phần giá trị nhỏ nhất bạn làm nốt
a, vận dụng cái chia hết
tìm ước chung lớn nhất
chúc lm đc bài
\(\text{a) Để B có giá trị nguyên thì}\)
\(10n⋮\left(5n-3\right)\)
\(\Rightarrow[2.\left(5n-3\right)+6⋮\left(5n-3\right)\)
\(\text{mà }\)\(2.\left(5n-3\right)⋮\left(5n-3\right)\)
\(\Rightarrow6⋮\left(5n-3\right)\)
\(\Rightarrow5n-3\in1;2;3;6;-1;-2;-3;-6\)
\(\Rightarrow5n\in4;5;6;9;2;1;0;-3\)\(\text{Vì }n\in Z\)
\(\Rightarrow n=0\text{hoặc}n=1\)
\(\text{b) Ta có}:B=\frac{10n}{5n-3}=\frac{2.\left(5n-3\right)+6}{5n-3}=2+\frac{6}{5n-3}\)
\(\text{Để B đạt GTLN thì }\frac{6}{5n-3}\text{đạt GTLN}\)
\(\text{Vì }6>0\Rightarrow\frac{6}{5n-3}\text{đạt GTLN khi}\) \(5n-3\text{ đạt GTLN }\)\(\Rightarrow\hept{\begin{cases}5n-3\text{ đạt GTNN}\\5n-3>0\end{cases}}\)
\(\Rightarrow5n-3=2\Rightarrow n=1\)
\(\text{Vậy GTLN của A là}\)\(5\)\(\text{khi }n=1\)
\(A=\frac{n+1}{n-2}=\frac{n-2+2+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=2+\frac{3}{n-2}\)
Để A là số nguyên thì \(\frac{3}{n-2}\)là số nguyên
\(\frac{3}{n-2}\)là 1 số nguyên khi và chỉ khi \(n-2\)là ước của 3
\(\Rightarrow n-2=\left(-1;1;-3;3\right)\)
\(n-2=1\Rightarrow n=1+2=3\)
\(n-2=\left(-1\right)\Rightarrow n=\left(-1\right)+2=1\)
\(n-2=3\Rightarrow n=3+2=5\)
\(n-2=\left(-3\right)\Rightarrow n=\left(-3\right)+2=\left(-1\right)\)
Vậy \(n\)là \(3;1;5;\left(-1\right)\)để A là phân số
Xin lổi
Để A là giá trị lớn nhất nhé ! nhưng vẩn nhớ k cho tớ nhé
\(b)\) Ta có :
\(A=\frac{6n-1}{3n+2}=2-\frac{5}{3n+2}\) ( câu a mình đã phân tích rồi nên khỏi phân tích lại )
Để A đạt GTNN thì \(\frac{5}{3n+2}\) phải đạt GTLN hay nói cách khác \(3n+2>0\) và đạt GTNN
\(\Rightarrow\)\(3n+2=1\)
\(\Rightarrow\)\(3n=-1\)
\(\Rightarrow\)\(n=\frac{-1}{3}\) ( loại vì \(n\inℤ\) )
\(\Rightarrow\)\(3n+2=2\)
\(\Rightarrow\)\(3n=0\)
\(\Rightarrow\)\(n=0\)
Suy ra : \(A=2-\frac{5}{3n+2}=2-\frac{5}{3.0+2}=2-\frac{5}{2}=\frac{-1}{2}\)
Vậy \(A_{min}=\frac{-1}{3}\) khi \(n=0\)
Chúc bạn học tốt ~
\(a)\) Ta có :
\(\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=\frac{6n+4}{3n+2}-\frac{5}{3n+2}=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)
Để \(A\inℤ\) thì \(\frac{5}{3n+2}\inℤ\)\(\Rightarrow\)\(5⋮\left(3n+2\right)\)\(\Rightarrow\)\(\left(3n+2\right)\inƯ\left(5\right)\)
Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)
Suy ra :
\(3n+2\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(n\) | \(\frac{-1}{3}\) | \(-1\) | \(1\) | \(\frac{-7}{3}\) |
Mà \(n\inℤ\) nên \(n\in\left\{-1;1\right\}\)
Vậy \(n=1\) hoặc \(n=-1\)
Chúc bạn học tốt ~