Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(d\)là \(UCLN\left(2n+3;4n+8\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(2⋮d\)
\(\Rightarrow\dfrac{2n+3}{4n+8}\) tối giản khi và chỉ khi \(n\in\left\{\pm1;\pm2\right\}\)
\(\left\{{}\begin{matrix}A=a-b+c\\B=a+b-c\end{matrix}\right.\)
Ta có : Nếu chúng đối nhau thì :
\(A+B=0\)
\(\Rightarrow\left(a-b+c\right)+\left(a+b-c\right)=0\)
\(\Rightarrow a-b+c+a+b-c=0\)
\(\Rightarrow\left(a+a\right)+\left(b-b\right)+\left(c-c\right)=0\)
\(\Rightarrow2a=0\)
\(\Rightarrow a=0\)
\(\Rightarrow A\) đối \(B\rightarrowđpcm\)
Do tổng 2018 là số có 4 chữ số nên số n có 4 chữ số.
Gọi số n là abcd. Theo đầu bài ta có:
abcd + ( a + b + c + d ) = 2018
=> ( 1000a + a ) + ( 100b + b ) + ( 10c + c ) + ( d + d ) = 2018
=> 1001a + 101b + 11c + 2d = 2018
a = 2018 / 1001 = 2 ( còn thừa 16 )
b = 16 / 101 = 0 ( còn thừa 16 )
c = 16 / 11 = 1 ( còn thừa 5 )
Do 2d là số chẵn mà 5 là số lẻ => d không có nghiệm ( loại )
Vậy ta sẽ phải lấy c = 0 ( còn thừa 16 )
d = 16 / 2 = 8
Vậy số n là 2008.
Thử lại: s(n) = 2 + 0 + 0 + 8 = 10
=> n + s(n) = 2008 + 10 = 2018 ( thoả mãn )
Đáp số: 2018
a )Để A là phân số <=> \(\frac{n-2}{n+3}\) là phân số => \(n+3\ne0\Rightarrow n\ne-3\)
b ) \(A=\frac{n-2}{n+3}=\frac{n+3-5}{n+3}=\frac{n+3}{n+3}-\frac{5}{n+3}=1-\frac{5}{n+3}\)
Để \(1-\frac{5}{n+3}\) là số nguyên <=> \(\frac{5}{n+3}\) là số nguyên
=> n + 3 thuộc Ư(5) = { - 5; - 1; 1; 5 }
=> n + 3 = { - 5; - 1; 1; 5 }
=> n = { - 8; - 4; - 2 ; 2 }