Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p^4-q^4 = (p^2-q^2).(p^2+q^2) = (p-q).(p+q).(p^2+q^2)
p,q là snt > 5 => p,q lẻ => p=2a+1 ; q=2b+1 ( a,b thuộc N sao )
=> p^4-q^4=(2a-2b)+(2a+2b+2).(4a^2+4b^2+4a+4b+2) = 16.(a-b).(a+b).(2a^2+2b^2+2a+2b+1) chia hêt cho 16 (1)
Lại có : p,q là snt > 5 =>p,q đều ko chia hết cho 3
=> p^2 và q^2 đều chia 3 dư 1
=> p^4 và q^4 đều chia 3 dư 1
=> p^4-q^4 chia hết cho 3 (2)
Mà p,q là snt > 5 => p,q đều ko chia hết cho 5
=> p^2;q^2 chia 5 dư 1 hoặc 4
=> p^4 và q^4 đều chia 5 dư 1
=> p^4-q^4 chia hết cho 5 (3)
Từ (1);(2) và (3) => p^4-q^4 chia hết cho 16.3.5=240 ( vì 16;3;5 là 3 số nguyên tố với nhau từng đôi một )
=> ĐPCM
Tk mk nha
b1
Các số tự nhiên chia hết cho 3 có số dư là n;n+1;n+2
Nếu \(n⋮3\Leftrightarrow n\left(n+1\right)\left(n+5\right)⋮3\)
Nếu \(n+1⋮3\Leftrightarrow n\left(n+1\right)\left(n+5\right)⋮3\)
Nếu \(n+2⋮3\Leftrightarrow n\left(n+1\right)\left(n+5\right)=n\left(n+1\right)\left(n+2+3\right)\)
Mà \(3⋮3\)\(\Rightarrow n+2+3⋮3\) \(\Rightarrow n\left(n+1\right)\left(n+2+3\right)⋮3\)
Hay \(n\left(n+1\right)\left(n+5\right)⋮3\)
Vậy \(n\left(n+1\right)\left(n+5\right)⋮3\forall n\in N\)
Ơ, đề phải là lớn hơn hẳn 3 chứ nhỉ ? sao lại bằng đc ? nếu bằng thì đề sai ; sửa là lơn hơn hẳn 3 nhé
Có p2 - 1 = (p - 1)(p + 1)
Vì p là snt > 3 nên p có dạng 3k + 1 ; 3k + 2 ( k là stn)
*Nếu p = 3k + 1
=> p2 - 1 = (3k + 1 - 1)(3k + 1 + 1)
= 3k( 3k + 2 ) chia hết cho 3
*Nếu p = 3k + 2
=> p2 - 1 = (3k + 2 - 1)( 3k + 2 + 1)
=( 3k + 1) .(3k + 3)
= 3 ( k + 1 )( 3k + 1 ) chia hết cho 3
Vậy .........
Vương Cô Lô Nhuê
Có p2 - 1 = (p - 1)(p + 1)
Vì p là snt > 3 nên p có dạng 3k + 1 ; 3k + 2 ( k là stn)
*Nếu p = 3k + 1
=> p2 - 1 = (3k + 1 - 1)(3k + 1 + 1)
= 3k( 3k + 2 ) chia hết cho 3
*Nếu p = 3k + 2
=> p2 - 1 = (3k + 2 - 1)( 3k + 2 + 1)
=( 3k + 1) .(3k + 3)
= 3 ( k + 1 )( 3k + 1 ) chia hết cho 3
Vậy .........
Có p2 - 1 = (p - 1)(p + 1)
Vì p là snt > 3 nên p có dạng 3k + 1 ; 3k + 2 ( k là stn)
*Nếu p = 3k + 1
=> p2 - 1 = (3k + 1 - 1)(3k + 1 + 1)
= 3k( 3k + 2 ) chia hết cho 3
*Nếu p = 3k + 2
=> p2 - 1 = (3k + 2 - 1)( 3k + 2 + 1)
=( 3k + 1) .(3k + 3)
= 3 ( k + 1 )( 3k + 1 ) chia hết cho 3
Vậy .........
Ta có : n + 3 = (n + 1) + 2
Do n + 1\(⋮\)n + 1
Để n + 3 \(⋮\)n + 1 thì 2 \(⋮\)n + 1 => n + 1 \(\in\)Ư(2) = {1; -1; 2; - 2}
Lập bảng :
n + 1 | 1 | -1 | 2 | -2 |
n | 0 | -2 | 1 | -3 |
Vậy n \(\in\){0; -2; 1; -3} thì n + 3 \(⋮\)n + 1
b) Ta có : 2n + 7 = 2.(n - 3) + 13
Do n - 3 \(⋮\)n - 3
Để 2n + 7 \(⋮\)n - 3 thì 13 \(⋮\)n - 3 => n - 3 \(\in\)Ư(13) = {1; -1; -13 ; 13}
Lập bảng :
n - 3 | 1 | -1 | 13 | -13 |
n | 4 | 2 | 16 | -10 |
Vậy n \(\in\){4; 2; 16; -10} thì 2n + 7 \(⋮\)n - 3
Bài 1 :
a) \(n+3⋮n+1\)
\(a+1+2⋮n+1\)
\(\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
n+1 | 1 | -1 | 2 | -2 |
n | 0 | -2 | 1 | -3 |
b) c) d) tương tự
Bài 2 :
\(A=5+4^2\cdot\left(1+4\right)+...+4^{58}\cdot\left(1+4\right)\)
\(A=5+4^2\cdot5+...+4^{58}\cdot5\)
\(A=5\cdot\left(1+4^2+...+4^{58}\right)⋮5\)
Còn lại : tương tự
1+7+7 mũ 2+7 mũ 3......+7 mũ 100.Tính a,a là tổng dãy số trên