\(\in\)N

a/ phân tích P...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2017

để f(x) và g(x) cùng chia hết cho -2x+6

=>\(\hept{\begin{cases}f\left(3\right)=0\\g\left(3\right)=0\end{cases}}\)<=>\(\hept{\begin{cases}\frac{3867}{20}-m+n=0\\\frac{1911}{11}+3m-n=0\end{cases}}\)<=>\(\hept{\begin{cases}-m+n=-\frac{3867}{20}\\3m-n=-\frac{1911}{11}\end{cases}< =>\hept{\begin{cases}m=-183,5386364\\n=-376,8886364\end{cases}}}\)

20 tháng 10 2018

chịu bạn ơi tên j,số điện thoại,nhà ở đâu?

20 tháng 10 2018

P = n4 + 4 = n4 + 4n2 + 4 - 4n2 = (n2 + 2)2 - (2n)2 = (n2 + 2 - 2n)(n2 + 2 + 2n)

Q = n4 + n2 + 1 = n4 + 2n2 + 1 - n2 = (n2 + 1)2 - n= (n2 + 1 - n)(n2 + 1 + n)

1 tháng 8 2017

 Ngọc Anh Dũngo0oNguyễno0oHuy hoàng indonaca0o0 khùng mà 0o0Tình bạn vĩnh cửu Phương DungHacker Mũ Trắng

1 tháng 8 2017

Cái đề là  \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\ge\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}???\)

20 tháng 12 2018

+ Nếu p=2

.Xét n>1 thì (n2)2<A=n4+4n<n4+2n2+1=(n2+1)2(loại)

Xét -2<n<0

suy ra (n2−1)2=n4−2n2+1<n4−4|n|=A<(n2)2(loại)

Do đó nϵ{−2,−1,0,1}

.Thử chọn ta đc n=0

.+ Nếu p=3 suy ra (n2)2<A=n4+4n2<(n2+2)2 nên A=(n2+1)2

.⇒n4+4n2=n4+2n2+1⇒2np−1=1

ko có n thỏa mãn vì VT chẵn còn VP lẻ.

+ Nếu p≥5 ⇒A=n4(1+4np−5) do đó 1+4np−5

cũng phải là số chính phương.

Mà do p≥5

nên p lẻ nên 4np−5 là số chính phương. Mà 1+4np−5 cũng là số chính phương. Suy ra n=0 vì chỉ có 2 số chính phương liên tiếp nhau là 01

.Vậy n=0

31 tháng 7 2018

Chứng minh rằng n^4+4^n là hợp số với mọi n là số tự nhiên, n>1 - Đại số - Diễn đàn Toán học

31 tháng 7 2018

CHính xác ko có Z+ Đâu :)

22 tháng 10 2017

n6 - n4 + 2n3 + 2n2
= n2 . (n4 - n2 + 2n +2)
= n2 . [n2(n - 1)(n + 1) + 2(n + 1)]
= n2 . [(n + 1)(n3 - n2 + 2)]
= n2 . (n + 1) . [(n3 + 1) - (n2 - 1)]
= n2. (n + 1)2 . (n2 - 2n + 2)
Với n ∈ N, n > 1 thì n2 - 2n + 2 = (n - 1)2 + 1 > (n - 1)2
Và n2 - 2n + 2 = n2 - 2(n - 1) < n2
Vậy (n - 1)2 < n2 - 2n + 2 < n2
=> n2 - 2n + 2 không phải là một số chính phương.