K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2022

Ta có : H(x)+Q(x)=P(x)H(x)+Q(x)=P(x)

<=>H(x)=P(x)−Q(x)<=>H(x)=P(x)−Q(x)

<=>H(x)=(4x3−32x2−x+10)−(10−12x−2x2+4x3)<=>H(x)=(4x3−32x2−x+10)−(10−12x−2x2+4x3)

<=>H(x)=(4x3−4x3)+(−32x2+2x2)+(−x+12x)+(10−10)<=>H(x)=(4x3−4x3)+(−32x2+2x2)+(−x+12x)+(10−10)

<=>H(x)=12x2−12x=(12x)(x−1)

HT

26 tháng 2 2022

1.a,Q=x+32x+1−x−72x+1=x+32x+1+7−x2x+11.a,Q=x+32x+1−x−72x+1=x+32x+1+7−x2x+1

            =x+3+7−x2x+1=102x+1=x+3+7−x2x+1=102x+1

b,b, Vì x∈Z⇒(2x+1)∈Zx∈ℤ⇒(2x+1)∈ℤ

Q nhận giá trị nguyên ⇔102x+1⇔102x+1 nhận giá trị nguyên

                                ⇔10⋮2x+1⇔10⋮2x+1

                                ⇔2x+1∈Ư(10)={±1;±2;±5;±10}⇔2x+1∈Ư(10)={±1;±2;±5;±10}

Mà (2x+1):2(2x+1):2 dư 1 nên 2x+1=±1;±52x+1=±1;±5

⇒x=−1;0;−3;2⇒x=−1;0;−3;2

Vậy.......................

HT

a) Ta có: \(Q\left(x\right)=x\cdot\left(\frac{x^2}{2}-\frac{1}{2}+\frac{1}{2}x\right)-\left(\frac{x}{3}-\frac{1}{2}x^4+x^2-\frac{x}{3}\right)\)

\(=\frac{x^3}{2}-\frac{x}{2}+\frac{1}{2}x^2-\frac{x}{3}+\frac{1}{2}x^4-x^2+\frac{x}{3}\)

\(=\frac{1}{2}x^4+\frac{1}{2}x^3-\frac{1}{2}x^2-\frac{1}{2}x\)

b) Thay \(x=-\frac{1}{2}\) vào biểu thức \(Q\left(x\right)=\frac{1}{2}x^4+\frac{1}{2}x^3-\frac{1}{2}x^2-\frac{1}{2}x\), ta được:

\(Q\left(-\frac{1}{2}\right)=\frac{1}{2}\cdot\left(-\frac{1}{2}\right)^4+\frac{1}{2}\cdot\left(-\frac{1}{2}\right)^3-\frac{1}{2}\cdot\left(-\frac{1}{2}\right)^2-\frac{1}{2}\cdot\frac{-1}{2}\)

\(=\frac{1}{2}\cdot\frac{1}{16}-\frac{1}{2}\cdot\frac{1}{8}-\frac{1}{2}\cdot\frac{1}{4}+\frac{1}{4}\)

\(=\frac{1}{32}-\frac{1}{16}-\frac{1}{8}+\frac{1}{4}\)

\(=\frac{3}{32}\)

Vậy: \(Q\left(-\frac{1}{2}\right)=\frac{3}{32}\)

28 tháng 7 2020

- cảm ơn ạ ><

AH
Akai Haruma
Giáo viên
26 tháng 4 2018

Lời giải:

Ta có:

\(f(x)=x\left(\frac{x^{2013}}{3}-\frac{x^{2014}}{5}+\frac{x^{2015}}{7}+\frac{x^2}{2}\right)-\left(\frac{x^{2014}}{3}-\frac{x^{2015}}{5}+\frac{x^{2016}}{7}+\frac{x^2}{2}\right)\)

\(f(x)=\frac{x^{2014}}{3}-\frac{x^{2015}}{5}+\frac{x^{2016}}{7}+\frac{x^3}{2}-\left(\frac{x^{2014}}{3}-\frac{x^{2015}}{5}+\frac{x^{2016}}{7}+\frac{x^2}{2}\right)\)

\(f(x)=\frac{x^3}{2}-\frac{x^2}{2}=\frac{x^2(x-1)}{2}\)

Với mọi giá trị nguyên của $x$ thì $(x-1)x$ là tích của hai số nguyên liên tiếp nên luôn chia hết cho $2$

Do đó: \(x^2(x-1)\vdots 2\Rightarrow f(x)=\frac{x^2(x-1)}{2}\in\mathbb{Z}\) với mọi gt nguyên của $x$ (đpcm)

8 tháng 3 2017

4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)

mà 3^6/9-81=0  => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0