Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b/ Sửa đề chứng minh: \(\frac{5a-3b+2c}{a-b+c}>1\)
Theo đề bài ta có:
\(\hept{\begin{cases}f\left(-1\right)=a-b+c>0\left(1\right)\\f\left(-2\right)=4a-2b+c>0\left(2\right)\end{cases}}\)
Ta có: \(\frac{5a-3b+2c}{a-b+c}>1\)
\(\Leftrightarrow\frac{4a-2b+c}{a-b+c}>0\)
Mà theo (1) và (2) thì ta thấy cả tử và mẫu của biểu thức đều > 0 nên ta có ĐPCM
2, 5a+b+3c/a-b+c>1 <=> a-b+c+4a+2b+2c/a-b+c>1
<=>4a+2b+2c/a-b+c > 0 (1)
xét P(2)=4a+2b+c>0,P(-1)=a-b+c>0 (do P(x)>0 với mọi x)
=>P(2)/P(-1)>0 => (1) đúng =>đpcm
3, hóng cao nhân
-đề chuyên LQĐ
1,Bổ đề : (a^2+b^2+c^2)(a+b+c) >= 3(a^2b+b^2c+c^2a) (nhân bung rồi Cauchy từng cặp 2 số)
từ đó P <= (a+b+c)/3-(a+b+c)^2/9=x/3-x^2/9 (với x=a+b+c>0)=x/3-(x/3)^2=t-t^2(với t=a+b+c>0)=t(1-t)<=(t+1-t)^2/4=1/4
maxP=1/4,đạt tại a=b=c=1/2
a) ax^2 + bx + c = 0
Để phương trình thỏa mãn điều kiện có 2 nghiệm dương phân biệt.
∆ > 0
=> b^2 - 4ac > 0
x1 + x2 = -b/a > 0
=> b và a trái dấu
x1.x2 = c/a > 0
=> c và a cùng dấu
Từ đó ta xét phương trình cx^2 + bx^2 + a = 0
∆ = b^2 - 4ac >0
x3 + x4 = -b/c, vì a và c cùng dấu mà b và a trái dấu nên b và c trái dấu , vì vậy -b/c >0
x3.x4 = a/c, vì a và c cùng dấu nên a/c > 0
=> phương trình cx^2 + cx + a có 2 nghiệm dương phân biệt x3 và x4
Vậy nếu phương trình ax^2 + bx + c = 0 có 2 nghiệm dương phân biệt thì phương trình cx^2 + bx + a = 0 cũng có 2 nghiệm dương phân biệt.
b) Ta có, vì x1, x2, x3, x4 không âm, dùng cô si.
x1 + x2 ≥ 2√( x1.x2 )
x3 + x4 ≥ 2√( x3x4 )
=> x1 + x2 + x3 + x4 ≥ 2[ √( x1.x2 ) + √( x3x4 ) ] (#)
Tiếp tục côsi cho 2 số không âm ta có
√( x1.x2 ) + √( x3x4 ) ≥ 2√[√( x1.x2 )( x3.x4 ) ] (##)
Theo a ta có
x1.x2 = c/a
x3.x4 = a/c
=> ( x1.x2 )( x3.x4 ) = 1
=> 2√[√( x1.x2 )( x3.x4 ) ] = 2
Từ (#) và (##) ta có
x1 + x2 + x3 + x4 ≥ 4