Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
\(f(-3)=(-3)^2=9; f(-\frac{1}{2})=(\frac{-1}{2})^2=\frac{1}{4}\)
\(f(0)=0^2=0\)
\(g(1)=3-1=2; g(2)=3-2=1; g(3)=3-3=0\)
b)
\(2f(a)=g(a)\)
\(\Leftrightarrow 2a^2=3-a\)
\(\Leftrightarrow 2a^2+a-3=0\Leftrightarrow (2a+3)(a-1)=0\)
\(\Rightarrow \left[\begin{matrix} a=\frac{-3}{2}\\ a=1\end{matrix}\right.\)
Thực hiện các phép chia đa thức, thu được:
\(f\left(x\right)=\left(x+3\right)\left[x^2+\left(b-3\right)x+\left(c-3b+9\right)\right]+d-3c+9b-27\)
\(f\left(x\right)=\left(x-4\right)\left[x^2+\left(b+4\right)x+c+4b+16\right]+d+4c+16b+64\)
\(f\left(x\right)=\left(x+3\right)\left(x-4\right)\left(x+b+1\right)+\left(c+b+13\right)x+d+12b+12c\)
Theo đề bài, ta có \(d-3c+9b-27=1\) (1)
\(d+4c+16b+64=8\) (2)
\(b+1=-3\) \(\Leftrightarrow b=-4\)
và \(\left(b+c+13\right)x+d+12b+12c\ne0\) (3)
Thế \(b=-4\) vào (1) và (2), thu được
\(d-3c-36-27=1\Leftrightarrow d-3c=64\)
và \(d+4c-64+64=8\) \(\Leftrightarrow d+4c=8\)
Từ đó suy ra \(\left(c;d\right)=\left(-8;40\right)\)
Thử lại, thấy thỏa mãn.
Do đó, \(\left(b,c,d\right)=\left(-4,-8,40\right)\)
Câu 7: Từ gt suy ra \(f\) vừa đồng biến vừa nghịch biến nên \(f\) là hằng số, nghĩa là \(f\left(x\right)=1000\) với mọi \(x\). Vậy \(f\left(2015\right)=1000\).
Cũng có thể giải bằng cách thế trực tiếp: \(a+b\le2a+b,5a+b\ge6a+b\) nên \(a=0\).
Câu 9: \(f\left(x_0\right)=\left(\sqrt{3}+\sqrt{5}\right)\) hoặc \(f\left(x_0\right)=-\sqrt{3}-\sqrt{5}\).
Tới đây ngồi giải pt.