Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
Ta có : \(P=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(x-1\right)^2}{2}\)
\(=\left(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(x-1\right)^2}{2}\)
\(=\dfrac{x-2\sqrt{x}+\sqrt{x}-2-x-2\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\dfrac{\left(x-1\right)^2}{2}\)
\(=\dfrac{-2\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(x-1\right)^2}{2}\)
\(=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)}=-\sqrt{x}\left(\sqrt{x}-1\right)\)
b, Ta có : \(P=-x+\sqrt{x}=-x+\dfrac{2.\sqrt{x}.1}{2}-\dfrac{1}{4}+\dfrac{1}{4}\)
\(=-\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
Vậy \(Max=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{4}\)
Lời giải:
ĐKXĐ: $x\geq 0; x\neq 1$
a.
\(A=\frac{(\sqrt{x}-2)(x-1)}{2}-\frac{(\sqrt{x}+2)(1-x)^2}{2(x+2\sqrt{x}+1)}=\frac{(\sqrt{x}-2)(x-1)}{2}-\frac{(\sqrt{x}+2)(\sqrt{x}-1)^2(\sqrt{x}+1)^2}{2(\sqrt{x}+1)^2}\)
\(=\frac{(\sqrt{x}-2)(x-1)}{2}-\frac{(\sqrt{x}+2)(\sqrt{x}-1)^2}{2}=\frac{2\sqrt{x}-2x}{2}=\sqrt{x}-x\)
b.
$\sqrt{x}-x=\frac{1}{4}-(x-\sqrt{x}+\frac{1}{4})$
$=\frac{1}{4}-(\sqrt{x}-\frac{1}{2})^2$
$\leq \frac{1}{4}$
Vậy GTLN của biểu thức là $\frac{1}{4}$. Giá trị này đạt tại $\sqrt{x}-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{4}$ (thỏa đkxđ)
a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\notin\left\{9;4\right\}\end{matrix}\right.\)
b: Ta có: \(P=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)
\(=\dfrac{2\sqrt{x}-9+2x-3\sqrt{x}-2-x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
a) \(P=\left(\dfrac{4\sqrt{x}}{\sqrt{x}+2}+\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
\(P=\left(\dfrac{4\sqrt{x}}{\sqrt{x}+2}-\dfrac{8x}{x-4}\right):\left[\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right]\)
\(P=\left[\dfrac{4\sqrt{x}}{\sqrt{x}+2}-\dfrac{8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right]:\dfrac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(P=\left[\dfrac{4\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right]:\dfrac{-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(P=\dfrac{4x-8\sqrt{x}-8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{-\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(P=\dfrac{-4x-8\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{-\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(P=\dfrac{-4\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{-\left(\sqrt{x}-3\right)}\)
\(P=\dfrac{-4\sqrt{x}\cdot\sqrt{x}}{-\left(\sqrt{x}-3\right)}\)
\(P=\dfrac{4x}{\sqrt{x}-3}\)
b) \(P=\dfrac{4x}{\sqrt{x}-3}\)
\(P=4\left(\sqrt{x}-3\right)+\dfrac{36}{\sqrt{x}-3}+24\)
Theo BĐT côsi ta có:
\(P\ge\sqrt{\dfrac{4\left(\sqrt{x}-3\right)\cdot36}{\sqrt{x}-3}}+24=36\)
Vậy: \(P_{min}=36\Leftrightarrow x=36\)
\(a,A=\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{x-2-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\\ A=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\\ A=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(a,P=\dfrac{-x+2\sqrt{x}-1+x-2\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}:\dfrac{2\sqrt{x}+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\\ P=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}+1}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
\(b,x=6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2\\ \Rightarrow P=\dfrac{\sqrt{5}-1}{\sqrt{5}-1+1}=\dfrac{\sqrt{5}-1}{\sqrt{5}}=\dfrac{5-\sqrt{5}}{5}\\ c,\dfrac{P}{\sqrt{x}}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\cdot\dfrac{1}{\sqrt{x}}=\dfrac{1}{\sqrt{x}-1}\le\dfrac{1}{0-1}=-1\)
Vậy \(\left(\dfrac{P}{\sqrt{x}}\right)_{max}=-1\Leftrightarrow x=0\)
a ĐKXĐ: \(x>0;x\ne4\)
\(\Rightarrow P=\left(\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right):\left(\dfrac{2}{x-4}+\dfrac{1}{\sqrt{x}+2}\right)=\left(\dfrac{\sqrt{x}-2-\sqrt{x}}{\sqrt{x}+2}\right):\left(\dfrac{2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{1}{\sqrt{x}+2}\right)=\dfrac{-2}{\sqrt{x}+2}:\left(\dfrac{2+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)=-\dfrac{2}{\sqrt{x}+2}:\dfrac{\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=-\dfrac{2\left(\sqrt{x-2}\right)}{\sqrt{x}}=\dfrac{4-2\sqrt{x}}{\sqrt{x}}\) b. Vì P và x cùng dấu \(\Rightarrow P>0\Rightarrow\dfrac{4-2\sqrt{x}}{\sqrt{x}}>0\Rightarrow4-2\sqrt{x}>0\) (vì \(\sqrt{x}>0\) ) \(\Rightarrow-2\sqrt{x}>-4\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\) kết hợp với điều kiện
\(\Rightarrow0< x< 4\)
a, x > 0 ; x khác 1
\(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2}{x-\sqrt{x}}\right):\dfrac{1}{\sqrt{x}-1}\)
\(=\left(\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\dfrac{1}{\sqrt{x}-1}=\dfrac{x-2}{\sqrt{x}}\)
b, Ta có : \(P=\dfrac{x-2}{\sqrt{x}}=1\Rightarrow x-2=\sqrt{x}\)
\(\Leftrightarrow x-\sqrt{x}-2=0\Leftrightarrow\left(\sqrt{x}+1>0\right)\left(\sqrt{x}-2\right)=0\Leftrightarrow x=4\)(tm)
a: \(P=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1}{1}=\dfrac{x-2}{\sqrt{x}}\)
b: Để P=1 thì \(x-\sqrt{x}-2=0\)
hay x=4
đk : \(x\ge0,x\ne1\)
\(=>P=\left[\dfrac{2\left(\sqrt{x}+2\right)-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right]:\left[\dfrac{x+\sqrt{x}-2+3-x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right]\)
\(P=\left[\dfrac{2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right].\left[\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+1}\right]\)
\(P=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)
b,\(x=6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2\) thay vào P
\(=>P=\dfrac{2\sqrt{\left(\sqrt{5}-1\right)^2}-1}{\sqrt{\left(\sqrt{5}-1\right)^2}+1}=\dfrac{2\sqrt{5}-3}{\sqrt{5}}\)
c,\(=>\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{1}{\sqrt{x}}=>2x-\sqrt{x}=\sqrt{x}+1\)
\(=>2x-2\sqrt{x}-1=0< =>2\left(x-\sqrt{x}-\dfrac{1}{2}\right)=0\)
\(=>x-\sqrt{x}-\dfrac{1}{2}=>\Delta=1-4\left(-\dfrac{1}{2}\right)=3>0=>\left[{}\begin{matrix}x1=\dfrac{1+\sqrt{3}}{2}\\x2=\dfrac{1-\sqrt{3}}{2}\end{matrix}\right.\)
đối chiếu đk loại x2 còn x1 thỏa
\(P=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}}\right).\dfrac{\left(1-x\right)^2}{2}\) (ĐK:\(x>0;x\ne1\))
\(=\left[\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+2\right)}\right].\dfrac{\left(x-1\right)^2}{2}\)
\(=\left[\dfrac{\left(\sqrt{x}-2\right)\sqrt{x}}{\left(x-1\right)\sqrt{x}}-\dfrac{x-1}{\sqrt{x}\left(x-1\right)}\right].\dfrac{\left(x-1\right)^2}{2}\)
\(=\dfrac{x-2\sqrt{x}-x+1}{\sqrt{x}\left(x-1\right)}.\dfrac{\left(x-1\right)^2}{2}=\dfrac{-2\sqrt{x}+1}{\sqrt{x}\left(x-1\right)}.\dfrac{\left(x-1\right)^2}{2}\)
\(=\dfrac{\left(-2\sqrt{x}+1\right)\left(x-1\right)}{2\sqrt{x}}\)
Sai đề ko em?
a) Ta có: \(P=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}}\right)\cdot\dfrac{\left(1-x\right)^2}{2}\)
\(=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}}\right)\cdot\dfrac{\left(x-1\right)^2}{2}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)-\left(x-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)^2}{2}\)
\(=\dfrac{x-2\sqrt{x}-x+1}{\sqrt{x}}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2}\)
\(=\dfrac{\left(-2\sqrt{x}+1\right)\left(x-1\right)}{2\sqrt{x}}\)